TENNESSEE STROKE REGISTRY QUARTERLY REPORT

Volume 2, Issue 2 June 2019

This report is published quarterly using data from the Tennessee Stroke Registry.

Inside this report

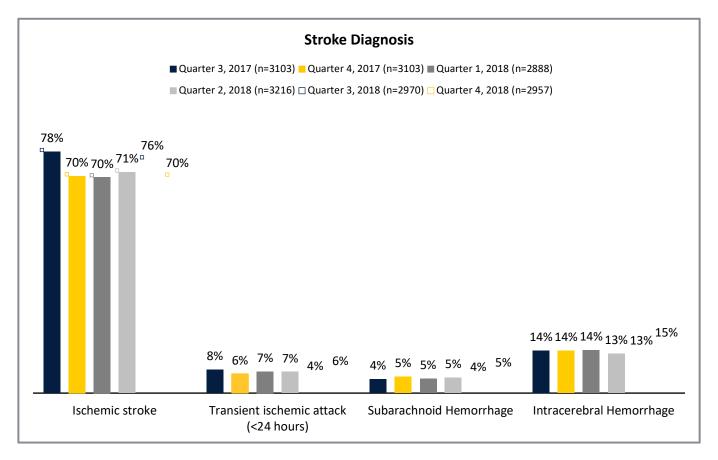
- Data on diagnosis, gender distributions, age distribution, arrival modes, insurance status, last known well to arrival, and medical history
- Data from October 2018 to December 2018
- Contact information for the Tennessee Stroke Registry

Background

The Tennessee Stroke Registry (TSR) was created in 2009 through the Tennessee Stroke Registry Act of 2008. In July 2017, the legislation was updated with Tennessee House Bill 123, requiring all certified comprehensive and primary stroke centers in Tennessee to share their data with the TSR in order to improve stroke care in the state. The bill requires data to be provided from hospitals on a quarterly basis. The data are uploaded to the American Heart/American Stroke Association's Get With the Guidelines (GWTG) data system, Quintiles.

This report includes data from October to December 2018, and will be referred to as Quarter 4 of 2018. Other quarters are also labeled annually. Quarter 3 of 2018 includes data from July to September 2018, Quarter 2 of 2018 consists of data from April to June 2018, Quarter 1 of 2018 represents January to March 2018. Quarters 3 and 4 of 2017 represent the same months as the corresponding quarters in 2018. The limitations of this report include that data reported are based on the data provided to the Tennessee Stroke Registry from reporting hospitals, and may not be inclusive of all strokes in the state of Tennessee

Variable Information*

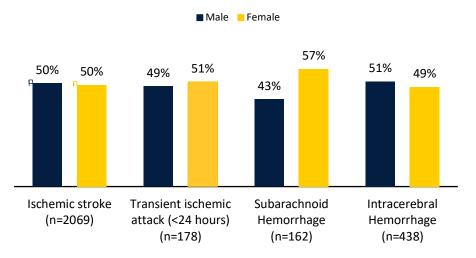

Measure	Numerator	Denominator
Age	Patients in specific age groups	Patients with a diagnosis of Ischemic stroke, TIA, Subarachnoid hemorrhage, or Intracerebral hemorrhage
Co-morbidities	Patients with co-morbidity	All patients
Transportation times	Patients arriving in time interval	Patients with a diagnosis of Ischemic stroke, TIA, Subarachnoid hemorrhage, Intracerebral hemorrhage, or Stroke not otherwise specified
NIHSS reported	NIH Stroke scale performed as part of initial evaluation AND Total Score is reported	Patients with a diagnosis of Ischemic stroke or Stroke not otherwise specified
Time to Intravenous Thrombolytic Therapy	Patients in time intervals based on time from patient arrival at the ED to time of administration of IV t-PA	Patients with a primary stroke diagnosis of ischemic stroke who received IV t-PA at my hospital
Reasons for no IV-rtPA	Patients in exclusion criteria group	Patients with a primary stroke diagnosis of ischemic stroke who arrived at the ED <270 minutes after the onset of stroke symptoms and had reason(s) why IV t-PA was not started at my hospital
Reasons for no IV-rtPA beyond 60 min	Patients grouped by reason	Patients with a primary stroke diagnosis of ischemic stroke in whom IV tPA was initiated greater than 60 minutes after hospital arrival
Modified Rankin Scale at discharge	Patients in each Modified Rankin Scale at discharge value	Patients with a diagnosis of Ischemic Stroke or Subarachnoid Hemorrhage or Intracerebral Hemorrhage or Stroke not otherwise specified
Complication types	Patients in each of the 4 combination groups (therapy received versus complication experienced)	Patients with a primary stroke diagnosis of ischemic stroke who received IV t-PA or intraarterial thrombolytic therapy at my hospital
Initial exam findings	Patients grouped by exam finding	Patients with a diagnosis of Ischemic Stroke or TIA or Subarachnoid Hemorrhage or Intracerebral Hemorrhage or Stroke not otherwise specified
Length of stay	Patients grouped by stroke type	All patients

GWTG/PAA Defect Free	All patients which were included in the numerator for <u>all</u> of the measures that they were not excluded from	 All patients which are included in the denominator for at least one of these measures: IV rt-PA 2 Hour Early Antithrombotics VTE Prophylaxis (for patients discharged on or after 4/7/2012) DVT Prophylaxis (GWTG Historic) (for patients discharged before 4/7/2012) Antithrombotics* Anticoag for AF* LDL 100 or ND-Statin * Smoking Cessation
CDC/COV Defect Free	All patients which were included in the numerator for <u>all</u> of the measures that they were not excluded from	All patients which are included in the denominator for at least one of these measures: IV rt-PA 2 Hour Early Antithrombotics VTE Prophylaxis Antithrombotics Anticoag for AF LDL 100 or ND Smoking Cessation Dysphagia Screen Stroke Education Rehabilitation Considered

^{*}Percentages in graphs are based on the number of cases per quarter unless otherwise specified.

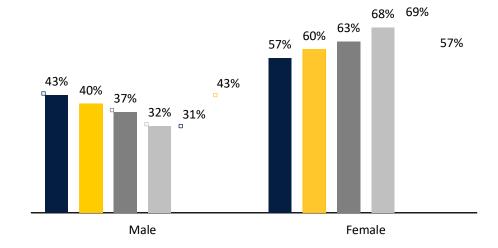
Data and Distributions

Diagnosis

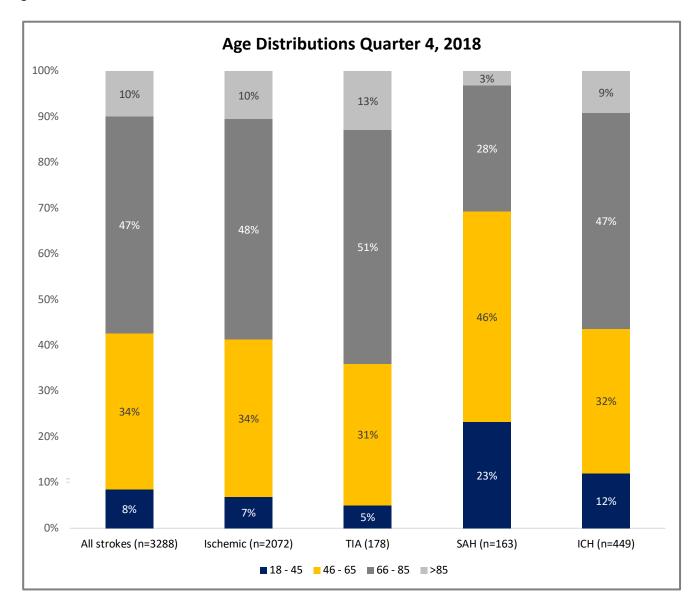

Overall, the patterns and distributions for the fourth quarter of 2018 are similar to what was shown in past TSR quarterly reports. There were 2,069 ischemic strokes, 178 transient ischemic attacks (TIA), 162 subarachnoid hemorrhages (SAH), and 377 intracerebral hemorrhages (ICH). The most common cases were ischemic strokes at 70% of strokes reported to the registry. The difference between the proportion of ischemic strokes was significant between Quarter 3 and Quarter 4 of 2017 (z=7.068, p<.001). There was also a significant difference between Quarter 3 of 2018 and Quarter 4 of 2018 (z=4.83, p=. p<.001). The data seems to suggest that in July, August, and September, there may be a tendency towards higher numbers of ischemic strokes. One study indicated that levels of air pollution may be linked to higher rates of stroke, this may be a potential area to look into to explain why we see higher levels of

ischemic stroke in the summer. Air quality is known to be worse in the summer, and particulate pollution can affect the development of atherosclerosis in adults. However, other studies have found no link between seasonality and stroke occurrence, so any conclusions require further observations of trends.

Gender Distributions

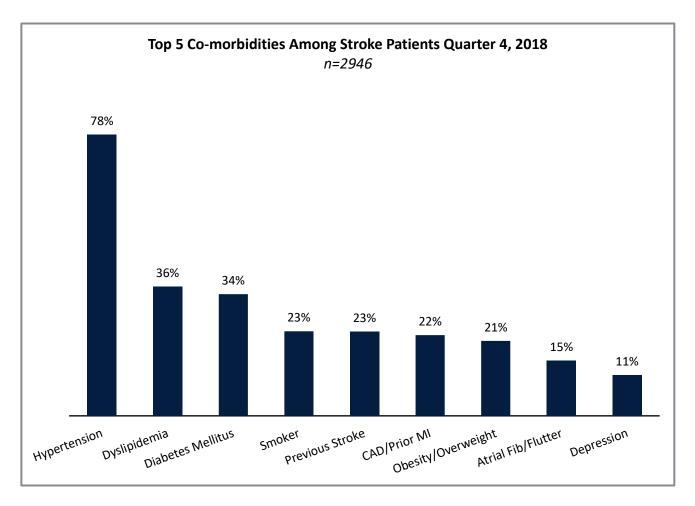

There were similar percentages of male and female cases for ischemic strokes. In past quarters, the trend of female transient ischemic attacks (TIA) being higher than male cases has been observed. The gender differences in strokes have become less pronounced for subarachnoid hemorrhage (SAH) in Quarter 4 of 2018, compared to previous quarters. The difference between female cases in Quarter 3 and Quarter 4 of 2018 was significant (z=1.97 p=.0488).

Gender Distribution Across Stroke Types Quarter 4

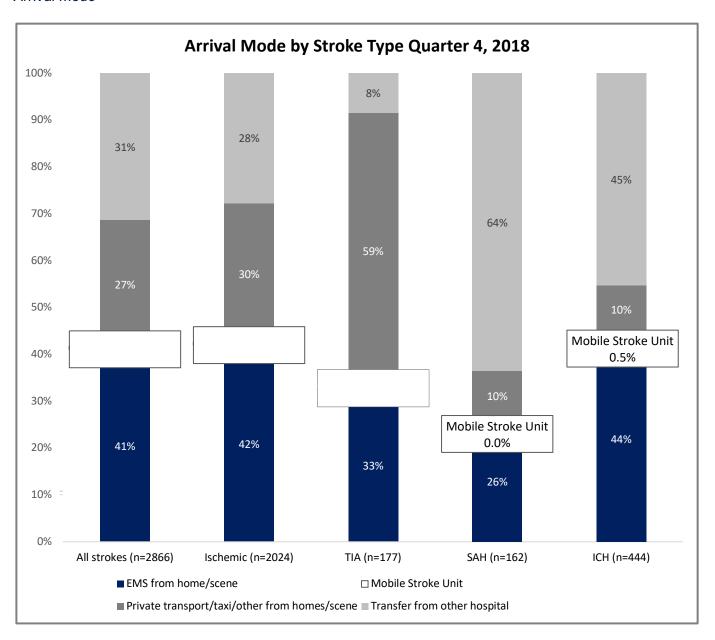


Gender distribution SAH

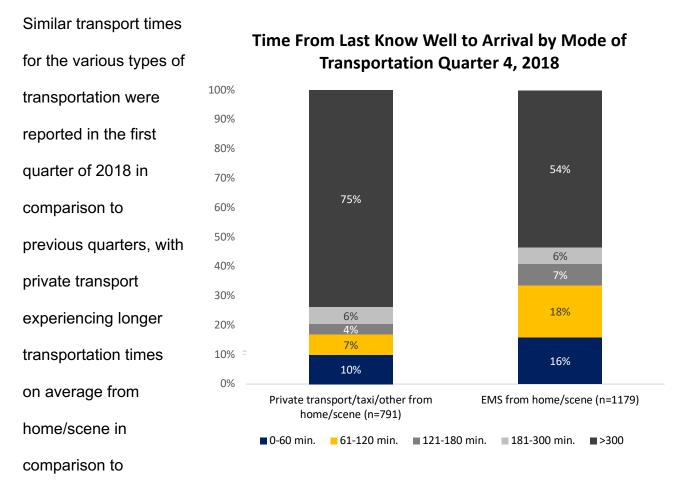
■ Quarter 3, 2017 (n=139) ■ Quarter 4, 2017 (n=165) ■ Quarter 1, 2018 (n=135) ■ Quarter 2, 2018 (n=160) □ Quarter 3, 2018 (n=122) □ Quarter 4, 2018 (n=162)



Age distributions


The most common age group experiencing strokes were those from ages 66-85, with 46% of all cases in this bracket. The prevalence of stroke overall increased by age, with only 8% of cases occurring in those aged 18-45. Most stroke types had the majority of stroke cases occurring in the 46-65 age group, with the exception of SAH. SAH differed from other stroke types in age distributions, where 49% of cases occurred in those ages 46-65.

Co-morbidities


The top three co-morbidities among stroke patients in Quarter 4 of 2018, as seen in past quarters' data, were hypertension with 78% of cases, dyslipidemia at 36%, and diabetes mellitus at 34%.

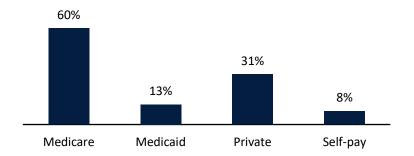
Arrival mode

For all stroke types, most patients arrived via EMS services, with 41% of patients in the fourth quarter of 2018 using this method of transportation. Most TIA patients arrived via private transport (59%). Most ICH (45%) and SAH (69%) patients predominantly arrived via transfer from another hospital.

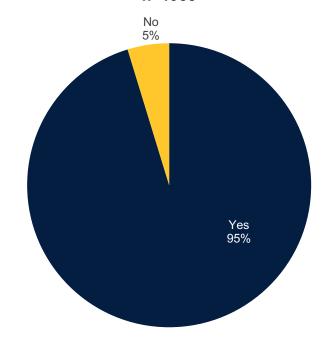
Transportation times

Emergency Medical Services (EMS) transport. Most patients arrived at the hospital in over 300 minutes via private transportation (75%) while only 54% of patients via EMS services arrived in that time frame (z=9.586, p<.001). Meanwhile, 14% of patients arrived to the hospital via EMS services in less than 60 minutes, compared to 9% in private transport (z=-3.749, p<.001).

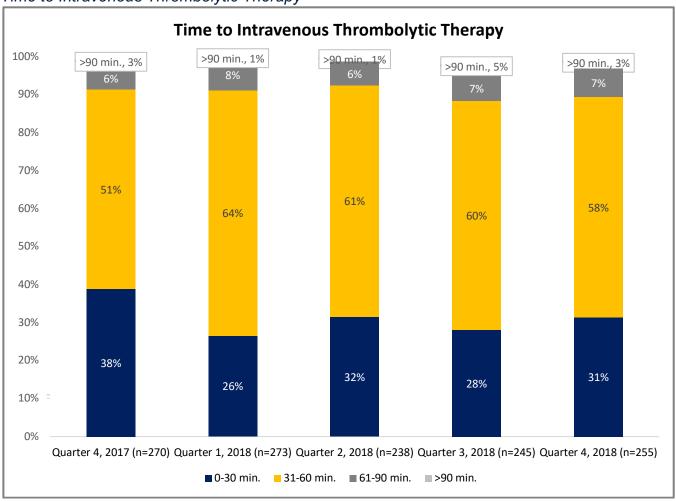
Insurance status


The majority of stroke patients had Medicare (60%). This reflects that the most common age group experiencing strokes are those from ages 66-85.

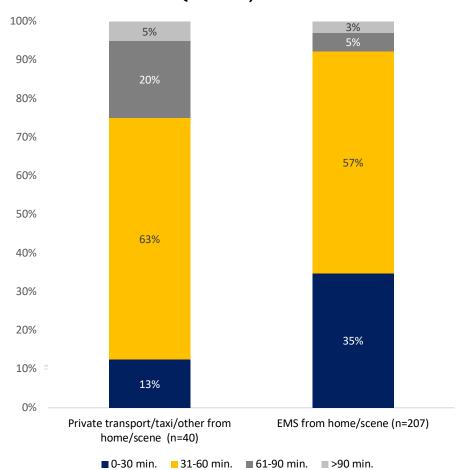
NIHSS Reported

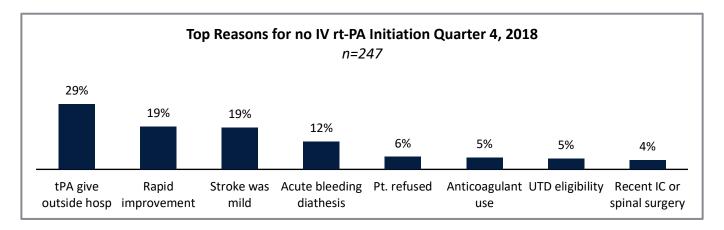

The majority of patients with a diagnosis of ischemic stroke or stroke not otherwise specified, 95%, had a score reported for the National Institute of Health Stroke Scale (NIHSS). The NIHSS is a 15-item examination used to evaluate the effect of acute cerebral infarction on the levels of consciousness, language, neglect, visual-field loss, extraocular movement, motor strength, ataxia, dysarthria, and sensory loss.

Insurance Status of Stroke Patients Quarter 4, 2018


n=2957

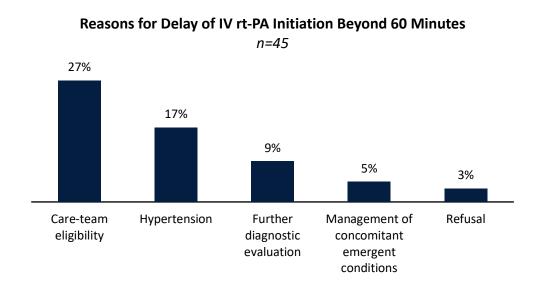
Quarter 4, 2018 NIHSS Reported n=1988

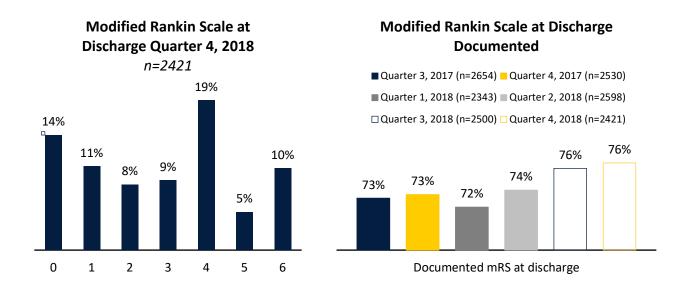




IV t-PA was initiated within 60 minutes for most patients in Quarter 4 of 2018, at 90%. Compared to transport via EMS services, arriving via private transport experience slightly slower times with 75% of patients receiving treatment in an hour versus 93% who arrived via EMS (z=-3.258, p=.001).

Time to Intravenous Thrombolytic Therapy Quarter 4, 2018


Reasons for no IV rt-PA


The percentages in the chart above represent the number of times the reason was listed as to why IV rt-PA was not initiated, with the percentages representing the number of times the reason was listed out of all times a patient was eligible for but not given IV rt-PA. The top five reasons for no IV rt-PA initiation in Quarter 4 of 2018, in order of highest proportion of patients to lowest were because IV or IA tPA was given outside the hospital, the patient showed rapid improvement, the stroke was mild, acute bleeding diathesis, or the patient refused treatment.

Reasons for delay, IV rt-PA beyond 60 minutes

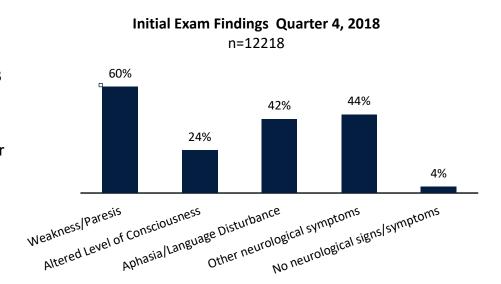
The most common reason for delay in IV rt-PA beyond 60 minutes was that care-team was unable to determine the eligibility of the patient, composing 52% of delays beyond 60 minutes in Quarter 4 of 2018.

Modified Rankin Scale at discharge

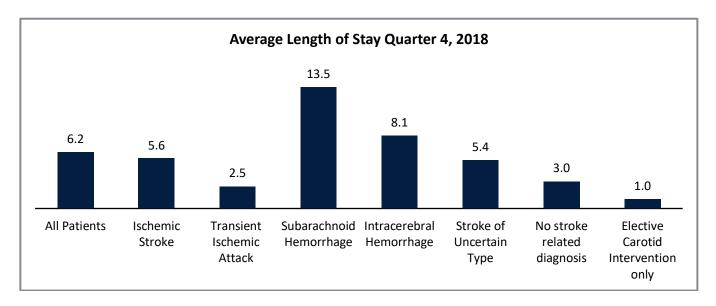
76% of patients had their Modified Rankin Scale at discharge documented in Quarter 4 of 2018.

The Modified Rankin Scale ranges from 0-6, with the following designations for values:

- 0 No symptoms at all
- 1 No significant disability despite symptoms: Able to carry out all usual activities
- 2 Slight disability
- 3 Moderate disability: Requiring some help but able to walk without assistance
- 4 Moderate to severe disability: Unable to walk without assistance and unable to attend to own bodily needs without assistance
- 5 Severe disability: Bedridden, incontinent and requiring constant nursing care and attention
- 6 Death


Complication types

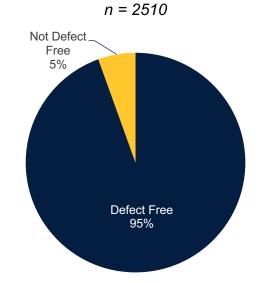
The most common type **Thrombolytic Therapy Complications** of complication for IV-■ Quarter 3, 2018 (n=245) Quarter 4, 2018 (n=255) 9% tPA in Quarter 4 of 2018 8% 7% was Intra-arterial and 5% **Symptomatic** 1% 1% 1% 1% Intracranial Hemorrhage IV t-PA & Intra-arterial & Life-IV t-PA & Life-Intra-arterial & Symptomatic Symptomatic threatening, serious threatening at 9%. This means that Intracranial Intracranial systemic hem Hemorrhage Hemorrhage out of all patients with a


primary stroke diagnosis of ischemic stroke who received IV t-PA or intra-arterial thrombolytic therapy, most complications were an Intra-arterial and Symptomatic Intracranial Hemorrhage.

Initial exam findings

The two most common findings in initial exam of patients in Quarter 4 of 2018 were weakness/paresis (60%) and neurological other than altered level of consciousness and aphasia (44%).

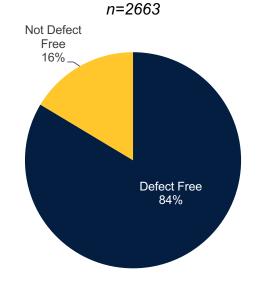
Length of Stay


The type of stroke with the longest length of hospital stay (LOS) was SAH at about 14 days, and the shortest LOS was TIA at about 3 days.

GWTG/PAA Defect Free

95% of patients received defect free care according to GWTG standards.

This is a higher percentage than in previous quarters, with the quarter with the highest percentage of defect-free care being Quarter 4 of 2018, with 94% of patients receiving defect-free care.


Percentage GWTG/PAA Defect Free

CDC/COV Defect Free

84% of patients received defect free care according to the Center for Disease Control (CDC) standards.

Percentage CDC/COV Defect Free

Contact Information

For more information about the Tennessee Stroke Registry and how to participate, contact:

Megan Quinn, TSR manager

Email (preferred): strokeregistry@etsu.edu

Phone: (423) 439-4427

Local GWTG Representative:

Kaley Pelton, MPH, RT(R)

Director, Quality & Systems Improvement, Greater Southeast Affiliate

kaley.pelton@heart.org

We look forward to working with you to improve stroke care in Tennessee.

References

- Ho AF, Zheng H, De Silva, DA, Wah W, et al. The relationship between ambient air pollution and acute ischemic stroke: A time-stratified case-crossover study in a city-state with seasonal exposure to the Southeast Asian Haze Problem. *Annals of Emergency Medicine*. 2018;72(5): 591-601. https://www.sciencedirect.com/science/article/pii/S0196064418305687. Accessed January 21, 2019
- Künzli N, Jerrett M, Mack WJ, Beckerman et al. Ambient air pollution and atherosclerosis in Los Angeles. Environmental Health Perspectives. 2004; 113(2), 201-206. https://ehp.niehs.nih.gov/doi/abs/10.1289/ehp.7523. Accessed January 21, 2019
- 3. Skajaa N, Horváth-Puhó E, Sundbøll, J, et al. Forty-year seasonality trends in occurrence of myocardial infarction, ischemic stroke, and hemorrhagic stroke. *Epidemiology*. 2018; 29(6), 777-783.
 - https://journals.lww.com/epidem/Abstract/2018/11000/Forty_year_Seasonality_Trends_in_Occurr ence_of.5.aspx. Accessed January 21, 2019.