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Abstract 

Objective: The current study evaluates the effectiveness of a brain–computer interface (BCI) system that operates by detecting a P300 elicited 

by one of four randomly presented stimuli (i.e. YES, NO, PASS, END). 

Methods: Two groups of participants were tested. The first group included three amyotrophic lateral sclerosis (ALS) patients that varied in 

degree of disability, but all retained the ability to communicate; the second group included three non-ALS controls. Each participant 

participated in ten experimental sessions during a period of approximately 6 weeks. During each run the participant’s task was to attend to 

one stimulus and disregard the other three. Stimuli were presented auditorily, visually, or in both modes. 

Results: Two of the 3 ALS patient’s classification rates were equal to those achieved by the non-ALS participants. Waveform morphology 

varied as a function of the presentation mode, but not in a similar pattern for each participant. 

Conclusions: The event-related potentials elicited by the target stimuli could be discriminated from the non-target stimuli for the non-ALS 

and the ALS groups. Future studies will begin to examine online classification. 

Significance: The results of offline classification suggest that a P300-based BCI can serve as a non-muscular communication device in both 

ALS, and non-ALS control groups. 

q 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved. 
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1. Introduction 

Farwell and Donchin (1988) have shown that a P300­

based brain–computer interface (BCI) can by used by 

able-bodied young adults, to input a string of characters to 

a computer using the P300 as a substitute typing finger. 

Further demonstrations and an assessment of the 

communication speed achieved by such a system were 

provided by Donchin et al. (2000) who tested the BCI 

with wheelchair-bound healthy adults as well as with 

able-bodied subjects. Similar results, with able-bodied 

subjects, were obtained by Allison and Pineda (2003). 

While the P300-BCI was designed to serve the needs of 

locked-in patients (i.e. people who have lost all voluntary 
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muscle control), no subject who participated in these 

initial demonstrations was locked-in. In the study reported 

here, and in pilot testing, we have conducted an extensive 

test of the P300-BCI with several amyotrophic lateral 

sclerosis (ALS) patients and a control group of able-

bodied adults. ALS is one of the most common causes of 

the locked-in syndrome; it is a neurodegenerative disease 

leading to paralysis and death, typically within 2–5 years 

(Kunst, 2004). A BCI system will provide locked-in ALS 

patients whose cognitive abilities are left intact a means 

of communication that does not depend on neuromuscular 

control. The focus of the current study is on ALS patients 

because they are the most likely population to benefit 

from a BCI. 

The current study examines the efficacy of a P300-BCI, 

with an emphasis on a number of aspects of the system’s 

function not addressed in previous studies. We assess the 

effect of the BCI across three different stimulation modes 

(auditory, visual, and auditoryCvisual). By testing across 
Clinical Neurophysiology 117 (2006) 538–548 
www.elsevier.com/locate/clinph 
 Published by Elsevier Ireland Ltd. All rights reserved. 

http://www.elsevier.com/locate/clinph
http:1388-2457/$30.00
http:shell.cas.usf.edu
mailto:esellers@wadsworth.org


539 E.W. Sellers, E. Donchin / Clinical Neurophysiology 117 (2006) 538–548 
multiple sessions, we examined the accuracy with which 

P300s are detected, and hence the systems reliability across 

multiple experimental sessions. We also tested different 

detection and classification algorithms that allowed the 

system to discriminate between stimuli that did, and did not, 

elicit a P300. 

A BCI allows a user to communicate with devices 

without voluntary muscle activity (i.e. using only the 

electrical activity of the brain; Wolpaw et al., 2002). A 

BCI is not a mind-reading device. Rather, its primary 

function is to provide the subject with a virtual keyboard, 

whose keys are pressed by aspects of brain activity. Each 

key press constitutes a choice of an item from the set of 

items contained in the keyboard, and the subject’s choice is 

indicated through the control of electrical brain activity. 

Such a system may be used by a completely paralysed or 

locked-in individual. 

1.1. The P300 speller 

The P300-BCI, the ‘P300 Speller,’ described by Farwell 

and Donchin (1988) presents a 6!6 matrix of characters. 

Each row and each column are intensified and the 

intensifications are presented in a random sequence. The 

subject focuses attention to one of the 36 cells of the matrix. 

The sequence of 12 flashes, six rows and six columns, 

constitutes an ‘Oddball Paradigm’ (Fabiani et al., 1987) with 

the row, and the column, containing the character to be 

communicated constituting the rare set, and the other 10 

intensifications constituting the frequent set. Items that are 

presented infrequently (the rare set) in a sequential series of 

randomly presented stimuli will elicit a P300 response if the 

observer is attending to the stimulus series. Thus, the row and 

the column containing the target character will elicit a P300, 

because when the target stimulus flashes this constitutes a 

rare event in the context of all other character flashes. 

Donchin et al. (2000) evaluated the P300 Speller data offline, 

using stepwise discriminate analysis (SWDA) or a combi­

nation of discrete wavelet transformation (DWT) and 

SWDA. The SWDA and DWT/SWDA algorithms produce 

classification coefficients that classified responses similarly. 

Donchin et al. (2000) demonstrated that such coefficients 

classify the character correctly in an online mode 56% of the 

time. Additionally, 92% of the time either the row or column 

is correctly classified (i.e. the classification is half-correct). 

1.2. P300 Speller pilot data and the current four-choice 
paradigm 

Preliminary studies of the P300 Speller with ALS 

patients indicated that some patients found it difficult to 

communicate by spelling text character by character (Sellers 

et al., 2003); even though a P300 component was elicited 

from these patients in a standard oddball task. Sellers et al. 

(2003) reported that ALS patients’ responses were more 

variable, and the patients may have more difficulty using 
a matrix that includes many items because of uncontrollable 

eye movements and the rapid presentation rate of the 6!6 

matrix. Although eye movements are not required to orient 

attention (Posner, 1980; Yantis et al., 2002), involuntary eye 

movements may make it difficult to orient attention to a 

specific location. For this reason, we chose to focus the 

present study on a paradigm based on a four-choice oddball 

to provide users with the ability to answer simple questions. 

In practice, this paradigm is similar to the manner of 

communication used by nearly locked-in patients who retain 

some rudimentary muscle control. For example, caregivers 

ask binary questions and the patient may respond YES by 

looking to the right, or raising an eyebrow, and do nothing 

for a NO response. 

It is impractical to base a P300-BCI on a binary choice, 

as the probability of the correct item would be 0.50 

minimizing the difference in P300 amplitude between the 

target and non-target stimuli (Duncan-Johnson and 

Donchin, 1977). For this reason we adopted a four-choice 

stimulus paradigm. Using four stimuli (YES, NO, PASS, 

END) in the sequence, subjects would focus on either the 

‘YES’ or ‘NO’ during each series of flashes. The probability 

of the target event (i.e. the event the subject wished to 

select) was 0.25, a probability likely to yield a detectable 

P300 (Duncan-Johnson and Donchin, 1977; Johnson and 

Donchin, 1978). Although the main focus of the current 

paradigm is to test a system to answer YES/NO questions, 

four choices are presented for experimental purposes. 

However, practically speaking, if a system is as efficient 

with twice as many choices, more effective and faster 

communication will be possible. 

1.3. Summary and goals of the current study 

Kubler et al. (2001) have shown that severely disabled 

patients can use slow cortical potentials to operate a BCI. 

More recently, Kubler et al. (2005) have reported that 

severely disabled patients can operate a BCI using EEG 

rhythms recorded over sensorimotor cortex. However, a 

P300-based BCI has never been tested with an ALS 

population; therefore, a main impetus of the current study 

is to determine whether such a system may be a viable 

communication option for ALS patients. In a locked-in 

state, ALS patients are thought to be cognitively intact; 

however, they have lost the ability to communicate by 

traditional means (see Hanagasi et al., 2002; Lomen-Hoerth 

et al., 2003; Paulus et al., 2002; for studies that question the 

cognitive abilities of ALS patients). Unfortunately, effective 

communication with a completely locked-in patient has not 

been demonstrated. An essential first step is to determine if 

the system can be effective with ALS patients who are not 

yet locked-in. It is important to be able to communicate with 

the participants because they must be able to provide their 

intended message. 

In the current study, we examine how several different 

variables affect the classification rates of the P300-BCI. 
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Extended use of a P300-BCI, mode of presentation, task 

manipulations, and methods of deriving SWDA weights are 

all examined. Each of these factors is discussed below. 
Table 1
 

Example experimental session run sheet: Answer, answer a question;
 

Focus, attend to item provided by experimenter (YES or NO); A, auditory;
 

AV, auditoryCvisual; V, visual
 

Run Task Mode Target Item 

1 Answer A YES 

2 Answer V NO 

3 Answer AV YES 

4 Answer A NO 

5 Answer V YES 

6 Answer AV NO 

7 Focus A YES 

8 Focus V NO 

9 Focus AV YES 

10 Focus A NO 

11 Focus V YES 

12 Focus AV NO 
2. Methods 

2.1. Subjects 

The subjects were recruited from the local community 

and with the help of the Amyotrophic Lateral Sclerosis 

Association, Florida Chapter. Three control participants 

were included in the study (one man, age 33, and two 

women, age 31 and 37). Three ALS patients who were able 

to communicate with the experimenter were also included in 

the study (two men, age 37 and 44, and one woman, age 50). 

The ALS patients varied in their degree of mobility. ALS 

participant one was wheelchair bound but retained the use of 

upper extremities. ALS participant two could use all 

extremities, but found it very difficult to walk, and choose 

to use a wheelchair. ALS participant three retained only 

head movement and some speech ability. All subjects signed 

an informed consent approved by the University of South 

Florida Institutional Review Board, IRB approval 100650. 

2.2. Data acquisition and processing 

The EEG was recorded using a cap (Electro-Cap 

International, Inc.) embedded with 16 electrodes covering 

left, right, and central scalp locations (Fz, Cz, Pz, Oz, Fp1, 

Fp2, F3, F4, C3, C4, P3, P4, P7, P8, T7, T8) based on the 

modified 10–20 system of the International Federation 

(Sharbrough et al., 1991). The recordings were referenced to 

the right earlobe, and grounded to the right mastoid. The 

EEG was amplified with a SA Electronics amplifier, 

digitized at a rate of 160 Hz, high-pass filtered at 0.1 Hz, 

and low-pass filtered at 50 Hz. The electrode impedance did 

not exceed 5 kU. All aspects of data collection and 

experimental control were controlled by the BCI2000 

system, developed at the Wadsworth Center, New York 

State Department of Health (Schalk et al., 2004). Signal 

processing (i.e. time domain averaging, generation of 

classification algorithms, etc.) was conducted offline using 

Matlab 7.0 and SPSS 11.0. Before offline analyses were 

performed, a moving-average filter of four samples and a 

decimation factor of four samples were applied to the data. 

Both of these procedures can also be performed online 

before a classification algorithm is applied to the data. 

2.3. Task, procedure, and design 

Each subject initially participated in a typical oddball 

experiment that presented black and white line drawings of 

a zebra and an elephant as stimuli. The stimuli were 

presented randomly, at fixation, with a probability of 0.25 

for the zebra and a probability of 0.75 for the elephant. Each 
stimulus was presented for 600 ms and the ISI was set to 

1400 ms (the same presentation characteristics were used in 

the subsequent four-choice paradigm sessions). The 

subject’s task was to attend to the zebra, by passively 

counting or noting when it appeared. Because motor 

responses are not possible for locked-in patients, the current 

study has adopted this method of attending to target stimuli. 

After the initial oddball experiment subjects began 

testing with the four-choice oddball paradigm. Each 

stimulus was presented with a probability of 0.25 and the 

subjects were asked to attend to a stimulus, either YES or 

NO. This was achieved in one of two ways, depending on 

task condition. One task was to focus on the target stimulus 

(i.e. YES or NO as defined by the experimenter at the 

beginning of each run). The other task was to focus on the 

stimulus (YES or NO) that correctly answered a question 

provided by the experimenter. The questions were con­

structed such that the answer was always unambiguous (e.g. 

Is today Monday?). Stimulus duration was 600 ms for the 

visual stimulus, and 600 ms for the auditory stimulus, the 

ISI was 1400 ms. Each experimental run consisted of 100 

stimulus presentations (75 non-target, 25 target). The 

stimuli were presented randomly in blocks of four (one of 

each stimulus type), 25 times, for a total of 100 

presentations. After each run a short break ensued. The 

duration of the break was determined by the participant, but 

was typically around 1 min. All subjects participated in 10 

experimental sessions that lasted approximately 1 h. The six 

subjects took from 4 to 6 weeks to complete the 10 

experimental sessions. Each session was composed of 12 

runs that were counter-balanced across the following 

variables, mode of presentation, task, and target item. In 

total, each session included four runs in each of the three 

modes, six runs for the target YES, six runs for the target 

NO, and six runs in each of the two task conditions. See 

Table 1 for an example run sheet for one session. 

The experimental sessions deviated in two important 

ways from how the system would be implemented in a 

clinical setting. First, online performance feedback was 
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random. Random feedback was used so that each 

participant’s performance would not be influenced by how 

well (s)he was performing (ideally no feedback would have 

been provided; however, due to a system limitation this was 

not possible). Second, the number of trials per run was held 

constant for all subjects and all runs. This was a necessary 

control so that each participant would have an equal amount 

of experimental data. In practice, the fewest number of trials 

that allow a desired level of classification would be used. 

For example, in the current case, 100 trials were used in 

each run; thus, 25 instances of each item are available to be 

averaged together. If only five trials per stimulus are needed 

to make sufficiently accurate classifications, only 20 trials 

per run would be necessary. This would allow the subject to 

make five times the number of classifications in the same 

amount of time. Obviously, in a clinical setting where both 

speed and accuracy are at a premium, the minimum 

necessary number of trials per run should be used. 

2.4. SWDA analysis 

We applied the step-wise discriminant analysis (SWDA) 

method of classification for the current analysis. Previous 

studies of the P300-BCI (e.g. Donchin et al., 2000; Farwell 

and Donchin, 1988) have demonstrated that SWDA performs 

equally well or better than several other methods of 

operationally defining P300 waveforms (Fabiani et al., 

1987). Previous research has not, however, examined how 

deriving SWDA weights from different subsets of data 

affected classification accuracy. Therefore, the analyses were 

conducted using three different methods of deriving SWDA 

weights. Deriving weights from a subset of data and applying 

them to independent data sets for testing allows us to directly 

compare performance across the different methods of 

derivation. In general, two steps are involved in the process. 

The first step is concerned with deriving weights. The second 

step applies the weights to data sets that are created from 

independent samples via bootstrapping. 

2.4.1. Deriving weights 
Stepwise Discriminant Analysis seeks an optimal 

discriminant function by adding variables (in this case, 

time points) to the equation until an optimality criterion is 

satisfied. In the present study the criteria were set to a 

minimum of four steps and a max of 10 steps, or a P value of 

!0.10 for adding a variable, and a P value of O0.15 to 

eliminate variables. In some cases it was necessary to relax 

these constraints (e.g. Method 1 (see below) uses only 100 

stimuli and in some instances it was necessary to increase 

the P value to enter variables into the solution, otherwise no 

features would be selected). All SWDA methods in the 

current study derived weights from data sets that were 

independent from the test sets. 

We recorded data from 16 electrodes at a sample rate of 

160 Hz; therefore, we have 16!160 channel-by-time 

variables available to derive the classification weights. 
Although we have 2560 variables at our disposal it is not 

necessary to include all of this information in the analysis 

for two primary reasons. First, P300 amplitude is typically 

largest along the midline electrodes. Second, using 

contiguous time points adds a substantial amount of 

redundant information to the analysis. This may result in 

the solution ‘over-fitting’ the data. Over-fitting the training 

data may reduce the generalizability of the solution to a 

subsequent data set. Accordingly, three midline electrodes 

(Fz, Cz, and Pz) were used in the analysis, and the data were 

decimated by a factor of four. A moving-average of four 

samples was also applied to the data. The time epoch used 

for all analyses was 900 ms, beginning at stimulus onset. 

The use of these parameters results in a total of 108 spatial 

location!time features for each analysis. 

Each set of SWDA weights was derived separately for 

each mode of presentation (auditory, visual, and auditoryC 
visual), and applied to data sets that included only same 

mode data. In other words, each analysis was conducted 

three times, once for each presentation mode. In addition, 

three different methods were used to derive SWDA weights. 

Method 1 used only the first run of a session. One run 

consisted of 100 stimulus presentations; SWDA weights 

were derived using 25 attended and 75 non-attended single-

trial stimulus presentations. The purpose of method 1 is to 

simulate a mode in which the system could be calibrated at 

the beginning of a session and the derived weights could be 

used online following the calibration period. Method 2 used 

the data from an entire session to derive the weights; in this 

case 100 attended and 300 non-attended stimuli were 

available for the analysis. Method 3 used data from two 

sessions to derive the weights; in this case 200 attended 

stimuli and 600 non-attended stimuli were available for the 

analysis. Method 2 and 3 simulate modes in which weights 

would be determined offline,  following a session (or

multiple sessions). The derived weights would then be 

used in a subsequent session online. 

2.4.2. Applying weights 
In general, the rare events in the oddball sequence elicit a 

P300 with considerable reliability, and the P300 can be 

readily detected provided the number of trials averaged is 

sufficient to allow the extraction of the P300 ‘signal’ from 

the EEG ‘noise’ (Farwell and Donchin, 1988). Of course, 

the required number of trials determines the speed with 

which the BCI can operate. Each trial adds 1400 ms to the 

detection time in the current four-choice paradigm. The 

critical value for assessing the performance of a BCI is, 

therefore, the smallest number of trials that allows the 

detection of the P300 at a given level of accuracy. Farwell 

and Donchin (1988) used a bootstrapping approach (Efron 

and Tibshirani, 1993) to estimate the smallest number of 

trials that would yield specified detection accuracies. We 

employed the same approach in the current study. 

Each data set consisted of 400 trials from which the 

bootstrapping samples could be extracted (100 trials for 
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each stimulus type). We created 1000 sets of trials at each of 

the four stimulus types, for each sample size of N, N ranging 

from 1 to 31, incremented by 3. This results in 4000 total 

cases for each bootstrapped data set. For each mode of 

presentation and each experimental session, the following 

steps were executed (modeled after Donchin et al., 2000): (1) 

obtain a random sample of N trials (stimulus presentations) 

for each of the four stimulus types (YES, NO, PASS, and 

END) by sampling with replacement from the set of 400 

trials; (2) compute the average for each stimulus type; (3) 

apply SWDA weights to the appropriate features and select 

the stimulus with the maximum discriminant score; (4) if the 

selected stimulus is defined as the target, count a hit, if a non­

target stimulus is selected, count a miss; (5) record the 

percentage of hits among the 1000 sets of samplings. The 

final result is the percent accuracy at each level of N trials. 

The results can be used to determine the value of N at which a 

given accuracy level is reached for each subject, each 

condition, and each modality of presentation. 

Time (sec) Time (sec) 

Fig. 2. Visual oddball experiment data for all six participants. The target 

waveforms (solid lines) represent an average of 50 stimulus presentations, 

and the non-target waveforms represent 150 stimulus presentations. 

3. Results 

3.1. Waveform analysis 

Fig. 1 presents an example of the waveform morphology 

for one subject, on a run that resulted in a correct 

classification. Each of the four stimuli (YES, NO, PASS, 

END) were presented 25 times and the resulting averaged 

waveforms are presented. The target item for the run was 

YES; the figure demonstrates a robust P300 elicited by the 

target item and very similar non-P300 responses for the 

remaining three stimuli. The ERPs elicited in the oddball 

experiment are displayed in Fig. 2. The subjects were 

presented with 200 stimuli, 50 of which were targets. The 

results of the oddball experiment suggest that all of the 

participants can potentially use a BCI based on an oddball 

sequence because all subject’s elicited responses were 
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Fig. 1. Averaged waveforms for a target (YES) and three non-target stimuli 

(Pz electrode). Each waveform represents 25 stimulus presentations (one 

experimental run of 100 stimuli). The data was recorded from non-ALS 

participant 1, visual only mode. 
differential for the rare and frequent stimulus. Waveform 

data for the four-choice paradigm is presented in Figs. 3 and 

4. Each figure shows, for each of the three modes, averaged 

data from Session 1 and Session 10 for each of the six 

participants. Fig. 3 shows data from the non-ALS partici­

pants and Fig. 4 shows data from the ALS participants. The 

waveforms demonstrate that variability exists across modes 

and sessions for both groups of participants. In general, as 

corroborated by the classification data discussed below, the 

ALS participant’s responses are more variable across mode 

and session than the non-ALS participants. 
3.2. SWDA classification performance 

There were no significant differences based on the user’s 

task, that is, whether they focused on a given word or 

whether they answered a question by focusing on the word 

that correctly answered a question posed by the exper­

imenter. Given that user task had no significant effects, the 

data were collapsed across task before the present analysis 

was conducted. Classification accuracy was entered into a 

mixed design factorial ANOVA using the between groups 

variable Group (non-ALS vs. ALS), and the within groups 

variables of Session (3–10 (session 1 and 2 were not 

included because Method 3 required 2 previous sessions 

data to derive SWDA weights)), Mode of Presentation 

(Auditory vs. Visual vs. AuditoryCVisual), Method (1 Run 

vs. 1 Session vs. 2 Sessions), and Number of Stimuli ((i.e. 

the number of presentations for each stimulus) 1, 4, 7, 10, 

13, 16, 19, 22, 25, 28, 31). Table 2 shows classification 

accuracy for each of the three modes and each of the three 

methods, averaged for all sessions, and all subjects. 
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Fig. 3. Non-ALS participant’s average waveforms for each presentation mode in Session 1 and Session 10. Target waveforms (solid lines) represent an average 

of 100 stimuli and non-target waveforms (dashed lines) represent an average of 300 stimuli (Pz electrode). 
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Fig. 4. ALS participant’s average waveforms for each presentation mode in Session 1 and Session 10. Target waveforms (solid lines) represent an average of 

100 stimuli and non-target waveforms (dashed lines) represent an average of 300 stimuli (Pz electrode). 

Table 2 

Mean accuracy for each subject, each mode of presentation, and each method of classification, averaged across all experimental sessions 

Non-ALS ALS ModexMethod 

Ss1 Ss2 Ss3 Ss1 Ss2 Ss3 Mean 

Aud 

1 Run 

1 Ses 

2 Ses 

Vis 

1 Run 

1 Ses 

2 Ses 

AudCVis 

1 Run 

1 Ses 

2 Ses 

Ss Mean 

65.1 

62.6 

64.5 

80.4 

92.6 

97.0 

78.1 

86.2 

89.6 

79.6 

70.2 

60.0 

72.7 

76.1 

77.1 

82.1 

64.6 

80.3 

76.7 

73.3 

56.8 

53.9 

58.4 

49.3 

43.3 

58.9 

70.4 

70.3 

73.2 

59.4 

65.4 

57.7 

79.6 

73.8 

55.5 

63.2 

64.9 

56.5 

55.4 

63.6 

73.2 

52.7 

56.5 

62.6 

58.5 

67.9 

68.9 

56.1 

46.5 

60.3 

59.1 

39.2 

35.5 

53.9 

57.8 

47.0 

61.6 

43.9 

50.8 

49.9 

65.0 

54.4 

61.2 

66.0 

64.1 

69.4 

68.1 

65.6 

65.4 

64.3 
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Table 3 

Best classification accuracy for each participant 

Group Ss1 Ss2 Ss3 

Non-ALS 97.0 (1.80) 82.1 (1.04) 73.2 (0.74) 

ALS 79.6 (0.97) 73.2 (0.74) 61.6 (0.43) 

Each value represents the best combination of presentation method 

(auditory, visual, or audCvis) and classification method (1 Run, 1 Session, 

or 2 Sessions) averaged across all experimental sessions. Corresponding bit 

rate/selection in parentheses. 
The values in Table 2 reflect the number of stimuli that 

produced the highest level of accuracy. In some cases, 28 

stimuli produced higher accuracy than 31 stimuli. 

Several effects are statistically significant. The main 

effect of Method yielded significant effects, F(2,8)Z9.64, 

MSeZ109.5, PZ.007. Method 1, using the first run of a 

session (meanZ58.98), and Method 3, using the aggregate 

of two previous sessions (meanZ57.05), classified signifi­

cantly better than Method 2, data from the previous session 

(meanZ53.44, Newman-Keuls, P!.01, and P!.05, 

respectively). The main effect of Number of Stimuli was 

also significant, F(10,40)Z135.57, MSeZ171.4, PZ.0001. 

As the number of stimuli before averaging was increased, 

classification accuracy also increased. Including more 

stimuli in the average reduces the amount of variability 

contributed by any given item. 

Although the main effect for Group was not statistically 

significant, the Group x Method interaction was significant, 

F(2,8)Z16.95, MSeZ145.2, PZ.0013. The ALS group 

classification accuracy was highest for Method 1 (meanZ 
56.83), Method 3 classification accuracy was highest for the 

non-ALS group (meanZ65.91). This result indicates more 

response variability across sessions in the ALS group. The 

Group!Number of Stimuli interaction was also significant, 

F(10,40)Z2.29, MSeZ22.3, PZ.031. As can be seen in 

Fig. 5, as the number of stimuli averaged increases, the Non-

ALS group accuracy increased at a faster rate than that of 

the ALS group, after 7 stimuli the performance curves 

remain relatively parallel. 

Two other interactions were significant. First, the 

Session!Number of Stimuli interaction was significant, 

F(70,280)Z1.46, MSeZ6.67, PZ.019. Obtained classifi­

cation accuracy in Session 3 and Session 10 was highest, 

and classification accuracy in Sessions 4–9, although similar 

in terms of the performance curves, was slightly lower. In 

addition, as the number of samples averaged together 

increases the differences between each sessions classifi­

cation accuracy increase. The Mode of Presentation! 
Number of Stimuli interaction was also significant, F(20, 

80)Z1.97, MSeZ10.1, PZ.018. Accuracy levels for all 
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Fig. 5. Mean accuracy for the ALS and non-ALS groups as a function of the 

number of stimuli averaged before applying SWDA weights. 
three modes begin at the same level, and as the number of 

stimuli averaged increases, the accuracy increases more for 

the visual and auditoryCvisual modes than it does for the 

auditory mode. Table 3 shows the combination of 

presentation method and SWDA classification that classi­

fied most accurately for each of the six subjects. The table 

shows that the classification rates for non-ALS subjects 2 

and 3 are nearly identical to that of ALS subjects 1 and 2. 

The above results provide an objective measure of how 

accurately the system will classify responses at each level of 

number of stimuli averaged. The following example 

describes the speed with which the P300-BCI could function 

using the current SWDA classification procedure. The 

following example is based on non-ALS subject 1 data. 

Assuming that a performance level of 75% was the target, 

this level of accuracy can be attained using four samples; 

thus, the system would have to present four sequences of the 

four stimuli (16 presentations) before averaging. Given the 

ISI of 1400 ms used in the current study, the result 

corresponds to one classification every 22.4 s. If target 

performance level is set at 92%, 19 samples must be 

obtained before averaging (76 presentations). Classification 

time at this classification level increases to 106 s/selection. 

In practice the speed/accuracy tradeoff will be dependent 

upon the individual user’s performance preferences. Some 

users will choose to communicate at a higher rate, accepting 

more errors, while others may wish to be more accurate but 

proceed at a slower pace. 
4. Discussion 

The primary question of the current study was whether a 

P300-BCI could function as an alternative method of 

communication for an ALS population. The results indicate 

that ALS patients who are losing the ability to communicate 

by traditional means could communicate with a P300-BCI 

system. The current study examined variables related to 

practical, theoretical, and methodological issues within the 

framework of the current design. Several of these factors are 

discussed below. 

4.1. Waveform differences 

Although there are some similarities between the oddball 

waveforms presented in Fig. 2 and the four-choice 

http:80)Z1.97
http:MSeZ6.67
http:F(70,280)Z1.46
http:F(10,40)Z2.29
http:meanZ65.91
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waveforms presented in Figs. 3 and 4, it is not entirely 

surprising that they are somewhat different for each subject 

and each condition. Squires et al. (1977) found large 

differences in P300 latency for auditory and visual stimuli, 

auditory P300s occurred 140 ms earlier. Squires et al. 

(1977) also demonstrated that the differences in latency 

were due to stimulus complexity and difficulty of 

discrimination. In the current study, stimuli were not 

matched for complexity and discriminability across the 

three modalities. All subjects reported no difficulty is 

discriminating the auditory or visual stimuli; however, it is 

likely that stimuli were recognized with different time 

courses in the different presentation modalities. 

Studies have also indicated that some ALS patients may 

have abnormal evoked potentials. Paulus et al. (2002) 

reported that 12 of 16 ALS patients displayed abnormal 

P300 patterns, as compared to an age-matched control 

group. They suggest that ALS may cause damage beyond 

motor areas. In addition, Lomen-Hoerth et al. (2003) found 

a higher level of fronto-temporal lobar dementia in ALS 

patients as compared to an age-matched control group. 

Individual differences in P300 latency and amplitude have 

also been reported (Fabiani et al., 1987), and the elicited 

response changes with age (Fabiani and Friedman, 1995; 

Goodin et al., 1978; Miller et al., 1987). For example, 

latency is slightly longer and amplitude is reduced for older 

adults as compared to young adults (Donchin et al., 1986). It 

would appear, from the analyses by Spencer et al. (1999) 

that these changes in the pattern of ERPs elicited in the 

elderly may be due to a more frequent elicitation of a 

Novelty-P3 in the elderly. In addition, the current groups 

were not age-matched which may exacerbate differences 

between the groups. 
4.2. Mode of presentation 

It is important to determine if a BCI device can function 

effectively using different presentation modalities, because 

it is quite possible that a user may have an auditory or visual 

deficiency. Previous research has shown that auditory 

oddball tasks, and visual oddball tasks, both elicit large 

P300 responses (Donchin et al., 1982; Fabiani et al., 1987; 

Squires et al., 1977). In addition, McDonald et al. (2000) 

and Teder-Salejarvi et al. (2002) reported higher accuracy 

and larger ERP amplitude when auditory and visual stimuli 

were presented simultaneously, than when either modality 

was presented in isolation. In the current study, the spoken 

stimuli may be recognized with different time courses, this 

would make classification more difficult for the spoken 

stimuli. In fact, the mode of presentation by number of 

stimuli interaction shows that the auditory mode did not 

reach the same level of classification accuracy as the visual 

or the auditoryCvisual mode. However, the auditory mode 

results do appear to be high enough that a user with a 

compromised visual system might still use a BCI. 
4.3. Task manipulation 

Previous research has reported that the effect of 

concurrently performing multiple tasks reduces P300 

amplitude (Gopher and Donchin, 1986; Isreal et al., 

1980a,b; Kramer et al., 1983; Sirevaag et al., 1989), and 

that increasing memory load also reduces P300 amplitude 

(Kramer et al., 1986; Wintink et al., 2001). The task 

manipulation in the current study is relevant to this issue. 

Focusing on a stimulus, or focusing on a stimulus that 

answers a specific question can be thought of as performing 

two tasks and it may also increase memory load. The results 

indicated that the elicited response were not different in the 

two task conditions. This is important because users do not 

have to answer a series of questions when data is being 

collected to derive classification weights. On the other hand, 

if a difference was present it would be important to maintain 

a strict correspondence between the conditions used for 

system calibration and actual use. 
4.4. Multiple sessions 

Collecting data across ten sessions provided a large 

enough sample of data to examine how repeated use affects 

classification accuracy. The classification data showed that 

significant classification differences are present across 

sessions. However, the differences are not large enough to 

cause the system to be ineffective. For example, classifi­

cation accuracy for all sessions starts at approximately the 

same level, and is relatively stable as the number of 

averaged stimuli is increased, Sessions 3 and 10 notwith­

standing. The slight reduction in performance during the 

intermediate sessions may be, in part, due to a mild 

habituation effect. In support of this proposal Kinoshita et 

al. (1996) found similar effects. In an initial session P300 

amplitude was at the highest level, and in subsequent 

session the amplitude slightly decreased, while latency 

remained relatively constant. When participants were asked 

to return for an unexpected final experimental session P300 

amplitude spontaneously returned to the same level as the 

initial session. In practice, after session 1 a user will always 

be in the intermediate range of sessions because use may be 

expected to continue indefinitely. Ravden and Polich (1998) 

showed that the P300 amplitude, but not latency, decreases 

across a 10-block (approximately 60-min) session of trials. 

They interpret this variation in terms of ultradian rhythm 

variation, which is thought to underlie oscillations in 

vigilance performance. On the other hand, the P300 of 

individual trials has been shown to be relatively stable 

(Cohen and Polich, 1997; Polich, 1989). In addition, Fabiani 

et al. (1987) have reported the within and between session 

reliability, for a given subject, on a given task, to be .70 or 

higher (Fabiani et al., 1987). Given the current level of 

classification, across multiple sessions, response habituation 

does not seem to be a likely source of poor performance. 
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4.5. Classification methodology 

Three methods of deriving SWDA weights were 

compared. The first method, using the first run of a session, 

was selected to simulate classification weights that could be 

derived online at the beginning of a session. This method 

examined how well the system could function using a 

minimal amount of calibration data, and requires less off-

line data processing. Interestingly, the ALS group 

performed best with weights derived from method 1. This 

result indicates that the ALS group’s responses are more 

variable than those of the non-ALS group’s. In contrast, for 

the non-ALS group, classification accuracy was highest 

with method 3. Method 3 used data aggregated from the 

previous two sessions. This result suggests that, over time, 

the responses are stable, so that using more data to derive 

classification weights may be an optimal method for some 

users. 

Classification methods in addition to SWDA may also be 

promising. Serby et al. (2005) has shown that Independent 

Components Analysis (ICA) can be used to classify P300 

Speller data online with 79.5% accuracy. Ritter and 

colleagues have demonstrated that support vector machines 

produce very robust classification rates as well, approaching 

100% (Kaper et al., 2004; Meinicke et al., 2002); however, 

the method has not been implemented online, and it is not 

clear how this would be achieved. Furthermore, there has 

not been a direct comparison of the methods to determine 

method superiority. 

4.6. Rate of item selection 

The focus of the current study was to determine whether 

a P300-system could be a viable option for an ALS 

population; not to optimize the speed of the system. 

Therefore, the rate of stimulus selection is not impressively 

rapid. One reason for this is because spoken stimuli were 

used and this reduced the speed with which the system could 

operate. Each stimulus was presented for 600 ms (the 

duration of the vocalized stimulus). This constraint would 

not be necessary with visual only presentations, or tone 

bursts. The ISI can also be adjusted to increase the number 

of stimulus presentations in a given time period; however, 

the current study did not examine this variable. Farwell and 

Donchin (1988) examined the effects of ISI and they found 

that a longer ISI provided a higher rate of communication 

for three of the four participants tested. Thus, it is possible 

that the current configuration did not optimize stimulus 

presentation rate, and, in turn, performance speed for the 

participants. 

The information transfer rate (bits/selection) in the 

current study ranged from 0.43 to 1.80 (see Serby et al., 

2005 for a summary of studies reporting bit rate). While this 

value is lower than most published studies, some notable 

differences are present. The item selection in the current 

paradigm is selecting an answer to a question. In the other 
systems several selections may be necessary to answer a 

single question. For example, a spelling system would 

require three correct selections to spell the word ‘YES.’ 

Obviously, one could use the letter Y to stand for YES, but 

this protocol would necessarily need to be established 

between the user and the person whom communication is 

with. In addition, participants in the current study as well as 

their caregivers (and others not included in the current 

study) have indicated that 1–5 min is not an unreasonable 

amount of time to wait for an answer to a question. 

Bit rate can also be misleading. Calculations are made 

after necessary time between selections is deleted (e.g. 

Kaper et al., 2004; Meinicke et al., 2002; Serby et al., 2005). 

It is also important not to overshadow the importance of 

accuracy as illustrated by Wolpaw et al. (2000a,b, 2002). An  

increase in accuracy from 75 to 90%, given four choices, 

nearly doubles the bit rate. Meinicke et al. (2002) report a 

maximum bit rate of 84.7 bits/min using a 6!6 matrix 

speller; unfortunately, the bit rate is accompanied with an 

accuracy level of less than 50%. The net result is a system 

that will not be able to correctly spell a single word, as it 

would enter an iterative loop of backspace operations. 

The measure of bit rate as used, for example, by Serby 

et al. (2005) is, therefore, of doubtful value in the 

assessment of a BCI. The metaphor of a ‘communication 

channel’ may provide the comfort of worked out engineer­

ing solutions and a convenient mathematical structure. 

However, the metaphor does not survive the realities 

encountered at the patient’s bed side. A key issue here is 

that ‘communicate’ while seemingly accurate is actually 

quite vague in the context of the ALS person. There is a 

huge difference between being able to respond to YES/NO 

questions, to spell out arbitrary text, to converse at 

acceptable rates with a relative, to communicate choices 

to a caretaker, to order services, and to control devices. The 

notion of bit rate, for example, seems to lose all meaning in 

the context of this broad range of meanings of ‘commu­

nicate’ as each of these present different communicative 

challenges. 

4.7. Conclusions 

BCI devices are beginning to allow people to commu­

nicate through non-muscular means (Birbaumer et al., 1999, 

2000; Kubler et al., in press; Pfurtscheller et al., 1996; 

Wolpaw and McFarland, 2004; Wolpaw et al., 2000a,b, 

2002). People suffering from neuromuscular disabilities 

may soon be using BCI communication on a daily basis. 

With any new technology, as more research is conducted, 

the systems will be refined and performance will increase 

accordingly. In addition, it will become clear as to which 

systems and interfaces work best in which circumstances 

and conditions. The current study has demonstrated two 

important points: (1) A P300-BCI can be effective with an 

ALS population; (2) auditory and/or visual stimuli can 

function as a P300-BCI control signal. Thus, we have 
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established the efficacy of pursuing P300-BCIs for the 

severely disabled population. 
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