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Abstract
Objective. The P300 speller is a brain–computer interface (BCI) that can possibly restore
communication abilities to individuals with severe neuromuscular disabilities, such as
amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in
electroencephalography (EEG) data. However, accurate spelling with BCIs is slow due to the
need to average data over multiple trials to increase the signal-to-noise ratio (SNR) of the elicited
brain signals. Probabilistic approaches to dynamically control data collection have shown
improved performance in non-disabled populations; however, validation of these approaches in a
target BCI user population has not occurred. Approach. We have developed a data-driven
algorithm for the P300 speller based on Bayesian inference that improves spelling time by
adaptively selecting the number of trials based on the acute SNR of a user’s EEG data. We
further enhanced the algorithm by incorporating information about the user’s language. In this
current study, we test and validate the algorithms online in a target BCI user population, by
comparing the performance of the dynamic stopping (DS) (or early stopping) algorithms against
the current state-of-the-art method, static data collection, where the amount of data collected is
fixed prior to online operation. Main results. Results from online testing of the DS algorithms in
participants with ALS demonstrate a significant increase in communication rate as measured in
bits/min (100–300%), and theoretical bit rate (100–550%), while maintaining selection accuracy.
Participants also overwhelmingly preferred the DS algorithms. Significance. We have developed
a viable BCI algorithm that has been tested in a target BCI population which has the potential for
translation to improve BCI speller performance towards more practical use for communication.

Keywords: P300 speller, amyotrophic lateral sclerosis, Bayesian dynamic stopping

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years, brain–computer interfaces (BCIs) have
received increased interest as alternative communication aids
due to their potential to restore control/communication abil-
ities to individuals with severe physical limitations due to
neurologic diseases, stroke, and spinal cord injury [1, 2].
BCIs decode and translate brain electrical signals that convey

the user’s intent into commands to control external devices
such as a word spelling program for communication. People
with amyotrophic lateral sclerosis (ALS), commonly known
as Lou Gehrig’s disease, represent a target population who
could benefit from BCI system development [3]. ALS is a
degenerative motor neuron disease that causes a progressive
loss in voluntary muscle control. This often results in an
inability to communicate either verbally or via gestures,
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especially in the late stages of the disease, the ‘locked-in’
stage, where the loss of muscle control affects eye
movements.

One of the most commonly researched BCI commu-
nication aids, especially in people with ALS, is the P300-
based speller, developed by Farwell and Donchin [4], which
enables users to make selections from an on-screen array by
selecting a desired character or an icon that conveys a desired
action. P300 spellers are BCIs that rely on eliciting event-
related potentials (ERPs) in electroencephalography (EEG)
data, including the P300 signal, which occurs in response to
the presentation of rare stimuli within more frequent stimulus
events in the context of an oddball paradigm [5]. Figure 1

shows a schematic of the P300 speller system. The user is
presented with a grid of character choices and focuses on a
desired character as groups of characters are flashed on the
screen. The P300 speller operates by processing and analyz-
ing a time window of EEG data after character subsets are
flashed on the screen to discern the character that the user
intended to spell. EEG features that correlate with the user’s
intent are extracted from time windows of EEG data, and
classification techniques [6, 7] are used to score features
associated with each flash to distinguish between target ERP
and non-target responses. This information is translated into a
character selection on the screen after averaging data over
multiple flashes.

Figure 1. P300 speller components. The user is presented with a grid of character choices. External electrodes are used to measure EEG
signals from the scalp, which are amplified, filtered and digitized for signal processing. From electrode channels, time sample blocks
(800 ms) of EEG data following each flash are used to extract feature vectors to be used for classification. In the training run (broken arrow),
feature vectors and their corresponding truth labels are used to train a classifier to distinguish between target ERP and non-ERP responses.
During the test run, following each flash, feature vectors are extracted from post-stimulus time sample blocks of EEG data and scored with
the trained classifier weights. The scores are averaged over multiple flashes/sequences and the character with the highest combined classifier
response is selected as the target. The selected choice is presented as the user’s intended choice.
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In several studies, the P300 speller has been shown to be
a viable system for communication in people with ALS [8–
10], with potential stability for long-term use [11]. However,
BCIs are still mainly used as research tools in controlled
environments [12–14]. There are a limited number of BCI
systems commercially available for independent home use,
e.g. [15]. One of the primary reasons that BCIs have not
translated into home use is that character selection times in
BCI communication systems are very slow compared to other
methods. Developing algorithms that improve the spelling
rate has been a leading focus of BCI research in recent years.

While research suggests this system is a viable commu-
nication aid for people with ALS, the EEG responses from
which P300 ERPs must be extracted have a very low signal-
to-noise ratio (SNR). The standard approach to increase the
P300 SNR within noisy EEG data is to average data from
multiple trials for improved accuracy in classification per-
formance [16]. This means each potential target character is
sampled multiple times before the classifier determines the
desired character, increasing the time needed to make a
selection and decreasing the communication rate. In most
conventional BCI spellers, the amount of data collected is
fixed prior to online operation, this is termed static data
collection, and the amount of data collected is usually similar
across all users. Based on a literature search of P300 speller
studies implemented in people with ALS using static data
collection [3, 8–10, 14, 17–20], potential targets are flashed
8–40 times, with accuracies ranging from 60 to 100%, and
performance improving in more recent years. However, static
data collection, risks over or under collection of data since it
does not assess the quality of the data that are measured.

Adaptive data collection strategies have been proposed in
previous research to balance P300 speller accuracy and
character selection time for improved online communication
rate [21, 22]. Some approaches optimize the amount of fixed
data collection prior to each P300 speller session by max-
imizing the written symbol rate metric [10], the number of
selections a user can correctly make in a minute taking into
account error correction e.g. [7, 10]. Most approaches vary
the amount of data collection prior to each character selection
based on a threshold function. Some approaches consider
summative functions based on character P300 classifier scores
e.g. [23–26]. Other approaches use a probabilistic model
based on the P300 classifier scores, by maintaining a prob-
ability distribution over grid characters, updating the dis-
tribution following EEG data processing and stopping data
collection when a specified confidence level is achieved [27–
32]. Probabilistic data collection algorithms also provide a
convenient framework to include additional knowledge such
as a priori language information to further inform the algo-
rithm’s behavior without having to redesign the system.

Some adaptive data collection methods have relied on
either tailoring the stopping criterion to a user’s past perfor-
mance (which may not be accurate longitudinally) or basing
the stopping criterion on data collected from a pool of users.
Relying on a pool of users to set the stopping criterion creates
the potential for mismatch between the pool and new users.
This is of special concern given that the pool of participants

has typically been healthy university students and employees
[17] while the target BCI population is users with disabilities
whose performance might differ substantially depending on
the etiology and progression of their disabilities. Most P300
speller algorithm research is dominated by offline analysis or
online testing in non-disabled participants, although there has
been an increase in online validation in BCI target users in
more recent years [3, 17, 33].

We have developed a data-driven Bayesian early stop-
ping algorithm we term dynamic stopping (DS). Under DS,
the algorithm determines the amount of data collection based
on a confidence that a character is the correct target [34]. This
enables flexibility in the amount of data collected based on
the quality of the user’s responses by collecting more data
under low SNR conditions and less data under high SNR
conditions without assuming a baseline level of performance
for a particular user. Flash-to-flash assessments of EEG
responses are integrated into the model via a Bayesian update
of character probabilities. Data collection is stopped and a
character is selected when the character probability exceeds a
threshold. We further enhanced the algorithm by including
information about the confidence of each character prior to
data collection by exploiting the predictability of language via
a statistical language model (dynamic stopping with language
model—DSLM) [35]. In online studies of non-disabled par-
ticipants, our algorithms significantly improved participant
performance, with about 40% improvements in average bit
rate from static to DS [34], and about 12% average
improvements from DS to DSLM [35].

Similar DS algorithms with Bayesian approaches have
been proposed, some including a language model, but have
not been evaluated in a target BCI population. The goal of
this study is to validate the improvements observed with our
DS algorithms in the non-disabled user studies in a target BCI
population. In this study, we compared the online perfor-
mance of static and DS methods in participants with ALS.

2. Methods

2.1. Participants

The studies were approved by the Duke University Institu-
tional Review Board and East Tennessee State University
Institutional Review Board, respectively. Ten participants
with ALS of varying impairment levels were recruited from
across North Carolina and Tennessee by the Collins’ Engi-
neering Laboratory (Electrical and Computer Engineering
Department, Duke University) and the Sellers’ Laboratory
(Psychology Department, East Tennessee State University),
over a period of five months. Participants gave informed
consent prior to participating in this study. Participant
demographic information can be found in table 1. Participants
who could not effectively communicate verbally used several
forms of assistive technologies for communication, which
included low and high tech approaches such lip reading,
manual eye gaze boards, touchscreen devices and head
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tracker systems. All of the recruited participants were used for
data analysis.

2.2. P300 speller task

Participants were presented with a 6 × 6 P300 speller grid of
alphanumeric characters on a screen, with the color check-
erboard paradigm [10, 36] used for stimulus presentation. The
speller grid consisted of alphanumeric characters, plus a space
character. However, because this study involved single-word

spelling tasks, the space character was disabled, and if
selected, was replaced with a hyphen (-). A word token was
displayed on the top left corner of the grid, with the intended
character to spell updated in parentheses displayed at the end
of the word. The word tokens were randomly selected from
the English Lexicon Project [37]. The task consisted of copy
spelling the word by locating the target character in par-
entheses within the grid and counting the number of times it
flashed. Groups of either three, four or five characters flashed

Table 1. Demographic information of study participants.

Participant Age Sex
ALSFRS-R

score
Years post first

symptoms
Inter-session
intervals Additional notes

D05 60 M 32 5.5 5 days, 7 days - Normal head and eye movements
- Severely impaired speech, communication via iPad
(with text-to-speech software) and writing

- Ambulatory

D06 59 M 3 7 8 days, 7 days - No head movement, normal eye movements
- No speech, communication via head tracking AAC
system and manual eye-gaze board

- Movement via wheelchair

D07 59 F 21 7 7 days, 8 days - Normal head and eye movements
- Severely impaired speech, communication via AAC
device with mouse

- Movement via wheelchair, ambulates short distances

D08 62 F 42 11 6 days, 1 day - Normal head and eye movements
- Slurred speech, communication via iPhone (with text-
to-speech software) and writing

- Ambulatory

E03 44 F 21 16 8 days, 7 days - Normal eye movements
- Moderately impaired speech
- Movement via wheelchair

E20 38 M 5 8 28 days,
14 days

- Limited head movements, normal eye movements
- No speech; communication via lip reading and eye
gaze for directional attention; occasional use of head
tracker system with predictive speller but cumber-
some due to limited head/neck control

- Movement via wheelchair

E21 63 F 1 8 28 days,
14 days

- Normal eye movements
- No speech, communication via eye tracker system
and manual eye gaze board

- Movement via wheelchair

E23 57 M 30 2 3 days, 3 days - Normal eye movements
- Normal speech
- Movement with walker

E24 56 M 33 3 4 days,
3 days,

- Normal eye movements
- Normal speech
- Movement via wheelchair

E25 49 M 33 1 14 days,
15 days

- Normal eye movements
- Normal speech
- Movement with a walker

Participants with ‘D’ were recruited at Duke University and those with ‘E’ were recruited at East Tennessee State University. ALSFRS-R denotes the ‘ALS
Functional Rating Scale’ which provides a physician-generated estimate of the patient’s degree of functional impairment, on a scale of 0 (high impairment) to
48 (low impairment) [47].
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simultaneously on the screen. The flash duration and the inter-
stimulus interval time were both set to 125 ms. Following
each flash, a time window of EEG data was used to extract
features to score each flash with a classifier. After a certain
number of flashes, (fixed or dynamically determined), the
P300 speller selects the character with the largest cumulative
classifier response. After character selection, there was a 3.5 s
pause prior to beginning selection of the next character.

Data were recorded from each participant in three ses-
sions that were conducted on different days; each session
consisted of a training and test run. Each session lasted about
1.5–2 h, including breaks. In the training runs, no feedback
was presented to the user while labeled data was collected to
train the P300 classifier. The training data for each participant
consisted of three 6-lettered words. Features extracted from
the training data were used to develop a P300 classifier that
was used in all the test runs for each session. In the test runs,
using the trained classifier, participants performed the copy-
spelling task with feedback and no error correction. During
each test run, the three data collection algorithms, static, DS
and DSLM, were used. The algorithm order was randomized
with each test run to avoid biasing the results by algorithm
order. The testing data for each participant consisted of two 6-
lettered words per algorithm for a total of 36 characters per
algorithm across all three sessions. Prior to the DS algorithms,
participants were told to expect variable data collection in
order to minimize surprise or confusion.

2.3. Signal acquisition

The open source BCI2000 software was used for this study
[38]. Additional functionality was added to implement the DS
algorithms [34, 35]. The Collins’ Lab collected EEG signals
using 32-channel electrode caps in the clinic; the Sellers’ Lab
used 16-channel electrode caps and collected data in partici-
pants’ homes. EEG signals were connected to the computer
via gUSBamp biosignal amplifiers. The left and right mas-
toids were used for ground and reference electrodes, respec-
tively. The signals were filtered (0.1–60 Hz at Duke
University, 0.5–30 Hz at ETSU) and digitized at a rate of 256
samples/s. Data collected from electrodes Fz, Cz, P3, Pz, P4,
PO7, PO8, and Oz were used for signal processing [6].

2.4. Feature extraction and P300 classifier training

Features that correlate with the user’s intent were extracted
from the EEG training data and used to develop a participant-
specific P300 classifier, according to Krusienski et al [6].
Following each flash, a time window of 800 ms of EEG data
(205 samples at sampling rate of 256 Hz), was obtained from
each of the 8 electrode channels and down sampled to a rate
of 20 Hz by averaging 13 time samples to obtain a feature
point (the last ten were not used for computational simplicity
of matrix operations). The time averaged features were con-
catenated across the channels to obtain a feature vector,

∈ ×x 1 120, per flash i.e. 15 features/channel × 8 channels/
flash = 120 features/flash. A truth label was assigned to a
flash, ∈t {0, 1}, depending on whether the target character

was present in the flash, i.e. label ‘1’ if the target character
was present in the flash and label ‘0’ if the target character
was not present in the flash.

A training data set from a session for each participant
consisted of feature vectors and their corresponding truth
labels, = …{ }t tT x x( , ), , ( , )TT1 1 . The training dataset was
used to train a stepwise linear discriminant analysis
(SWLDA) classifier, ∈ ×w .1 120 SWLDA uses a combina-
tion of forward and backward ordinary least-squares regres-
sion steps to add and remove features based on their ability to
discriminate between classes. The p-to-enter and p-to-remove
were set to 0.10 and 0.15, respectively.

2.5. Data collection stopping criteria

During the test run, character selection was made after ana-
lyzing EEG data from multiple flashes. Following each flash,
i, a feature vector, x ,i is extracted and used to compute a flash
score with the trained classifier, = ⊺y wxi i . A sequence is a
unit of data collection which consists of flashing all the
defined character flash sub-sets once. For the checkerboard
paradigm using the 6 × 6 speller grid (shown in figure 1), a
sequence consists of 18 flashes, with each character flashed
twice per sequence.

2.5.1. Static stopping. In static stopping, all characters in the
grid, ∈C Gn , begin data collection with a zero score. With
each group of characters that are flashed on the screen,

∈ SCn i, their scores are updated by adding the computed
flash score, yi. After a fixed number of sequences, the
character with the maximum cumulative classifier score was
selected as the target character. A character’s classifier score
is updated according to:

∑ζ μ=
=

( )C y , (1)n

i

I

i n i
0

,

where ζ C( )n is the cumulative classifier for the character, Cn

after I flashes prior to character selection; yi is the classifier
score for the ith flash; μ = 1i n, if ∈ SCn i; and μ = 0i n, if

∉ SCn i. For this study, character selection for static stopping
was made after 7 sequences i.e. I= 18 × 7 = 126 flashes.

2.5.2. Bayesian DS. In DS, the number of flashes prior to
character selection was determined by updating the character
probabilities of being the target after each flash via Bayesian
inference and stopping when a threshold probability is
attained. The DS algorithm [34], consists of an online and
offline portion, figure 2. In the offline portion, the trained
classifier is used to score the EEG data from the training
session. The scores are grouped into non-target and target
EEG response scores. The histograms of the grouped
classifier scores are scaled and then smoothed with kernel
density estimation to generate likelihood probability density
functions (pdfs) for the target, ∣p y H( )i 1 , and non-target,

∣p y H( )i 0 , responses.
In the online portion, the pdfs are used in the Bayesian

update process. Prior to spelling a new character, characters
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are each assigned an initialization probability, = ∣YP C C( )n T
*

0

All characters begin data collection with an equal likelihood
of being the target character, i.e. = ∣ =YP C C( )n T N

*
0

1 , where
N is the total number of choices in the grid. With each new
flash, the character probabilities are updated via Bayesian
inference:

∑

=

=
= × =

= × =

− −

= − −( ) ( )
( ) ( )

( )Y S

S Y S

S Y S

P C C

p y C C P C C

p y C C P C C

* ,

*, * ,

*, * ,
(2)

n T i i

i n T i n T i i

j

N

i j T i j T i i

1 1

1 1 1

where = ∣Y SP C C( , )n T i i
* is the posterior probability of the

character Cn being the target character, CT
*, given the current

classifier score history, = … −Y y y y[ , , , ]i i i1 1 , and the current

subset of flashed characters, Si; ∣ = Sp y C C( , )i n T i
* is the

likelihood of the classifier score, yi, given that the characterCn

was present or not present in the flashed subset, Si;
= − −Y SP C C( , )n T i i

*
1 1 is the prior probability of the character

Cn being the target character; and the denominator normalizes
the probabilities over all characters. The likelihood

∣ = Sp y C C( *, )i n T i is assigned depending on whether Cn

was/was not present in the subset of flashed characters, Si:

⎧⎨⎩∣ = =
∣ ∈
∣ ∉

S
S

S
p y C C

p y H C

p y H C
( , )

( ), if ,

( ), if .
(3)i n T i

i n i

i n i

*
1

0

Figure 3 shows the evolution of character probabilities
during the Bayesian character probabilities with each new
flash. Data collection is stopped when a character probability
attains the threshold probability, set at 0.9, and the character

is selected as the target character. A minimum limit on the
amount of data collection was not imposed. However, a
maximum limit of 7 sequences was imposed (as convergence
is not guaranteed), and if the threshold probability is not
reached, the character with the maximum probability is
selected as the target character. For the next character,
character probabilities are re-initialized and the Bayesian
update process is repeated until character selection.

2.5.3. Bayesian DSLM. In dynamic stopping with a language
model, the Bayesian update process is identical but for the
initialization probabilities, = ∣YP C C( )n T

*
0 , which are

dependent on the previous character selection, a bigram
language model [35]. For simplicity, we initialized the
probabilities of the first character assuming each character is
equally likely to be the target character; alternatively a
language model could be used based on the probability of
being a first letter in a word. For subsequent character
selection, if the previous character selection was non-
alphabetic, the initialization probabilities were uniform. If
the previous character was non-alphabetic, a letter bigram
model was used, shown in figure 4, generated from the
Carnegie Mellon University online dictionary [39]. Element
i j( , )row column in the character probability matrix denotes the
conditional probability, A A∣P ( )j i , that the next letter is the
jth letter of the alphabet, given the ith letter was previously
spelled. For example, vowels are more likely to follow
consonants, and specifically, a ‘U’ is more likely to follow a
‘Q’, compared to an ‘E’ or ‘S’.

For non-alphabetic characters (NACs), the initialization
probabilities are set to

N

1 . For alphabetic characters, the
initialization probabilities are dependent on the previous letter

Figure 2. Flowchart of Bayesian dynamic stopping algorithm [34]. In the offline portion (top blue panel), EEG data from a participant
training session are grouped into target and non-target responses and classifier scores are calculated using the SWLDA classifier weights.
Kernel density estimation is used to smooth the histograms of the grouped scores to generate likelihood pdfs. In the online portion, character
probabilities are initialized either from a uniform distribution or a language model. With each new flash, character probabilities are updated
with Bayesian inference until a threshold probability is met.
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selection,A −T 1, consisting of a weighted average of a bigram
language model and a uniform distribution:

= = ∉( )YC C
N

C A ZP
1

, { : }, (4)n T n* 0

A A ⎜ ⎟⎛
⎝

⎞
⎠α

α

= = = − ∑

+ − ∈

−( ) ( )YC C C
N

N
C A Z

P P 1
1

(1 )
1

, { : }, (5)

n T T n T

n

* 0 1 NAC

where α denotes the weight of the language model;
A A= ∣ −P C( )T n T 1 denotes the conditional probability that

the next letter isCn given the previously spelled letter isA −T 1,

obtained from the character probability matrix; ∑
NNAC
1 is the

sum of all NACs, subtracted from 1 to normalize the
probabilities; α−1 is the weight of the uniform distribution.
The additional probability introduced by the uniform
distribution is an error factor to mitigate the possible influence
of incorrectly spelled characters on the initialization prob-
abilities. Based on offline simulations, the weight of the
language model was set to α = 0.9.

2.6. Performance measures

The online performances of the participants using the P300
spellers with the various data collection algorithms were
evaluated using accuracy, task completion time, and com-
munication rates. All performance measures were pooled
across the three sessions. The accuracy is the percent of
characters correctly spelled by the participant. The task
completion time is the time spent to complete the task,
determined from the total number of flashes to complete the
spelling task, including the time pauses between flashes:

= + +( )F sCST 3.5 *(ISI FD) , (6)n n

=
∑ =TCT

CST

60
min , (7)n n1

36

where CSTn is the character selection time for character Cn;
3.5 s is the time pause between character selections; Fn is the
number of flashes used to select Cn, ISI is the inter-stimulus
interval and FD is the flash duration; and TCT is the task
completion time.

Bit rate is a communication measure that takes into
account accuracy, task completion time and the number of
choices in the grid [40]:

⎜ ⎟⎛
⎝

⎞
⎠= + + − −

−
B N P P P

P

N
log log (1 )log

1

1
, (8)2 2 2

= BBit rate *
total number of characters spelled

TCT
, (9)

where B is the number of transmitted bits/character selection;
N is the number of possible character selections in the speller
grid; P is the participant accuracy. Theoretical bit rate was
also calculated and differs from bit rate by excluding the time
pauses between character selections. Since the time pauses
can be varied according to user comfort, theoretical bit rate
represents an upper bound on possible communication rate.
However, in practice, some pause between characters is
required for the BCI user to evaluate the feedback provided
by the BCI.

Figure 3. Evolution of character probabilities in the dynamic
stopping algorithm. Prior to data collection, character probabilities
are initialized. With each new flash, character probabilities are
updated via Bayesian inference. After some flashes, the character
probability distribution becomes sparser as a few likely target
characters start to emerge. However, the probability mass starts to
concentrate on one character, and ideally, the probability of the
target character should converge towards 1. Data collection is
stopped when a character’s probability attains a preset threshold
value, and it is selected as the target character.

Figure 4. Character probability matrix for bigram language model.
Probability matrix was developed from Carnegie Mellon University
dictionary [39]. Element i j( , )row column in the grid denotes the
conditional probability, ∣P A A( )j i , that the user will spell the jth
letter in the alphabet, A j , given the ith letter, Ai, was previously
spelled. Probability values are clipped at 0.5 for visualization.
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Statistical analyses of the data involved repeated mea-
sures ANOVA tests to analyze the effect of the various data
collection algorithms, followed by multiple comparison tests
with Bonferroni adjustments, for pairwise comparisons if
applicable <p( 0.05).

3. Results

Figure 5 shows the participant non-target and P300 ERPs for
electrode CZ, averaged across all three sessions. Most parti-
cipants were able to elicit a P300 response for BCI control,
with some participants having relatively strong ERP respon-
ses e.g. D05 and D08. Average participant performance was
calculated by pooling across all P300 speller sessions. Sta-
tistical tests revealed significant differences in the mean of at
least two algorithms for three of the four performance mea-
sures: task completion time, bit rate and theoretical bit rate.
Additional multiple comparison tests were done to determine
specifically which pairs of algorithms with significant dif-
ferences. The same trend was observed across the perfor-
mance measures that had significant differences: static data
collection was significantly different from both DS and
DSLM, however, there was no significant difference between
DS and DSLM.

Figure 6 shows the mean, minimum and maximum
number of flashes used for character selection for each par-
ticipant under each of the algorithms. In general, the higher
the participant performance level, the fewer flashes required
prior to character selection. However, a wide range in the
number of flashes per character selection with the DS algo-
rithms occurs for each participant. This demonstrates that
choosing a static amount for data collection based on a user’s
performance level may not consistently match data collection
needs. The range in the number of flashes within subjects
demonstrates how the DS algorithms adapt to acute changes
in user performance rather than relying on an arbitrary
number of flashes or the user’s past performance.

The total task completion time was determined from the
total number of flashes used to spell all words, including the
time pauses between character selections. The static com-
pletion time was the same for all participants (35 s per char-
acter, 21 min per task), although one participant (E21)
selected one less character resulting in a slightly lower time.
Figure 7(A) shows the total task completion time and average
amount of time required to select a character. Character
selection times were significantly less in both DS algorithms,
with most participants achieving a 45–75% reduction when
compared to the static stopping algorithm ( < −p 10 6). The DS
algorithms reduced character selection time, with most ran-
ging from 8 to 20 s/character. Figure 7(B) shows that average
participant accuracy decreased from static stopping
(79.44 ± 29.98%), but the differences were not significant
between any of the algorithms, DS (75.40 ± 27.16%) and
DSLM (76.39 ± 25.63%) ( <p 0.23). Despite the substantial
reduction in data collected with DS, no significant dete-
rioration in accuracy was observed.

The accuracy and task completion time were used to
calculate the bit rate and theoretical bit rate. Figures 7(C)–(D)
show that the communication rates remained the same or
improved from the static to the DS conditions. Figures 7(C)
and (D) reveal that most participants obtained a substantial
increase in their bit rates (100–300%) and theoretical bit rates
(100–650%) with the DS algorithms, due to maintaining
similar accuracy levels while significantly reducing the spel-
ling task completion time. There was a significant increase in
bit rate from static to DS and DSLM (p< 10−3) and in theo-
retical bit rate from static to DS and DSLM (p< 10−6). There
was no significant difference observed in communication rate
between the DS algorithms. The average participant results
are summarized in table 2.

Testing BCI algorithms in the target population serves
several important purposes. Results from non-disabled parti-
cipants may not necessarily translate to the disabled popula-
tion due to variability in disease cause and progression [17];
thus, testing in the target population is a key validation step
for an algorithm. Further, testing in the target population
presents an opportunity for useful feedback during the design
process from target users [33]. From the post-session survey
results shown in figure 8, we observed that despite varying
accuracy levels, participant algorithm preference significantly
increased from static, to DS, to DSLM algorithm < −p( 10 )5 .
It should be noted that we informed participants to expect
variable data collection with the DS algorithms in order to
minimize surprise or confusion.

Given that multiple sessions occurred for data collection,
it is of interest to consider whether the classifiers trained in
each session were similar. However, a direct comparison of
the weight vectors that define the classifiers is difficult due to
the variation in EEG data and the sparsity constraint imposed
by SWLDA. As an alternative approach, classifiers were
applied offline to test data collected in separate sessions. If the
classifiers provide consistent performance across sessions, it
might be assumed that the data collected for calibration is
fairly stable. For each session, classifiers trained from the
other two sessions were used to simulate P300 speller selec-
tions with EEG data from the static stopping algorithm run.
Participant session intervals varied from 3 days to about 1
month (see table 1). Figure 9 shows the average offline
accuracy compared with the average online accuracy using
the within-session classifier. It can be observed that partici-
pant within-session accuracy was comparable to the inter-
session accuracy. These results indicate there is potential to
reduce training time with this a priori information, possibly
by initializing and updating a classifier as training data is
collected.

4. Discussion

Our DS algorithms adapt the amount of data collection based
on acute changes in user performance to maximize spelling
speed without compromising accuracy, compared to static
stopping. Participants demonstrated a range in the number of
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flashes to select each character, indicating that performance
even within a participant is not constant. This highlights the
importance of not relying on an arbitrary number of flashes or
the user’s past performance to control data collection. Most
participants experienced a significant reduction in task com-
pletion times with the DS algorithms with little to no negative
impact on accuracy. Further, communication rates were
greatly improved for the majority of participants.

In contrast to our non-disabled studies where significant
performance improvements were observed from static to DS
[34], and from DS to DSLM [35], the inclusion of a language
model did not significantly improve the performance of the

DS algorithm with the ALS participants. There is likely more
variability in the participants with ALS population due to
other confounding factors such as differences in disease
etiology and progression, in contrast to the non-disabled
population which tends to be more uniform and skewed
towards a younger demographic. However, the inclusion of a
language model did not significantly cause a reduction in
accuracy despite the substantial reduction in data collection.
Some previous approaches that include language information
in BCI spellers involved changing the user-interface [41–43].
Sometimes this might negatively affect accuracy, as in Ryan
et al [42], where it was hypothesized that the negative impact

Figure 5. Average participant ERP signals for electrode Cz. The average waveforms were obtained from training data across the three
sessions.
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was likely due to the increased task difficulty of adapting to a
new interface layout with multiple selection windows. In our
algorithm, the language model is incorporated within the data
collection algorithm, leaving the speller interface unchanged.
While this method of incorporating a language model did not
result in significant performance improvements, the language
model used was a bigram model which is overly simplistic. A
more complex language model that takes into account all of
the previously spelled characters could be incorporated in a
similar manner, as could other natural language processing
techniques, potentially improving performance.

Several DS algorithms for ERP-based spellers have been
proposed in the literature [22], and we focus on those that
have been implemented online, as real-time closed-loop
online BCI feedback gives a better measure of the perfor-
mance of an algorithm compared to offline analysis. Some DS
approaches have utilized summative functions based on
character P300 classifier scores [23–26]. However, these
approaches relied on estimating threshold parameters based
on a participant pool average or using the same parameters
across users. A user’s performance can vary acutely based
signal SNR, artifact level, attention, mood etc [44, 45] and
there is inter-participant variability in performance [46].
Alternatively, a probabilistic-based stopping criterion allows
for a more flexible means to adapt data collection based on
changes in a user’s acute performance as this uncertainty is
captured via classifier score distributions. Other DS algo-
rithms have used a probabilistic model, similar to the one in
this study, where character probability values are initialized,
updated with information derived with additional EEG data
collection until a preset probabilistic threshold level is met

and the character with the maximum a posteriori probability
is selected [27–30]. However, these algorithms were tested
with offline simulations, followed by online studies in non-
disabled participants and require further validation in a target
BCI population.

Online testing in people from a target BCI population is a
key step in BCI algorithm development because algorithms
optimized for individuals without disability may not neces-
sarily generalize to the target BCI population. Our algorithm
development process included offline simulations, testing in
participants without disability, followed by online validation
with participants with ALS. The positive feedback from the
people with ALS provides an incentive to incorporate our
adaptive data collection algorithm in prototype BCI speller
systems for home use, given the significant improvements
obtained when compared to the current state-of-the art static
stopping method. In addition, this reinforces the need for
developing BCI systems with communication rates that are
comparable to other augmentative and assisted communica-
tion systems to translate BCIs into practical systems for daily
home use.

There appears to be no correlation between level of
impairment and BCI control. ALSFRS-R denotes the revised
ALS Functional Rating Scale [47], which provides a physi-
cian-generated estimate of the patient’s degree of functional
impairment, on a scale of 0 (high impairment) to 48 (low
impairment) (table 1). The ALSFRS-R scores of the low-
performing participants D06, D07 and E23, were 3, 21 and
30, respectively. The remaining participants who had varying
levels of impairment ranging from 1 to 42, performed with
accuracy levels in the 85–100% range. In McCane et al where
participants with ALS performed word spelling tasks with a
P300 speller, results suggest no correlation between level of
impairment and successful BCI use [48]. Most of the high
performing participants (>70% accuracy) had ALSFRS-R
scores of less than 5, with the rest ranging from 16 to 25. The
low performing participants (<40% accuracy) had some
visual impairment e.g. double vision, rapid involuntary eye
movements and drooping eyelids, which could hinder their
ability to focus on the target for effective BCI use [49]. All
participants in this study had the ability to control eye gaze.
One possible reason for poor performance is the ability to
elicit P300 ERPs to control BCIs as it can be observed from
figure 5 that the low performing participants elicited P300
ERPs with relatively low SNR compared to non-target
responses. However, other possible reasons for poor perfor-
mance could include presence of artifact or the user mis-
understanding instructions for BCI use [50]

Head and eye tracking systems are commercially avail-
able and can provide a convenient means of daily commu-
nication for people with severe neuromuscular ability e.g.
eye-gaze calibration time can take around 3–5 min. Setting-
up, calibrating and troubleshooting a BCI system may be
difficult for lay people such as family members or care-takers
with limited technical background, especially given the day-
to-day variability of user performance, environmental condi-
tions, etc. Nonetheless, a recent case study by Sellers et al
showed that a stroke survivor was not able to accurately use

Figure 6. Average number of flashes per character selection with
static stopping, dynamic stopping (DS) and dynamic stopping with
language model (DSLM) algorithms. The error bars indicate the
maximum and minimum number of flashes/character selection used
by each participant. There was no minimum number of flashes
imposed. The maximum number of flashes possible to spell each
character was 126 flashes due to a sequence limit of 7 sequences/
character with 18 flashes/sequence using the checkerboard paradigm
on a ×6 6 P300 speller grid.
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an eye tracking system, but was successful using a matrix
speller, obtaining accuracy levels >70% [51]. BCI systems
can potentially be a viable communication alternative when
eye-tracker systems fail to provide or does not provide
effective communication, especially in late-stage ALS where
there can be an inability to sustain controlled eye movements.

Our Bayesian DS algorithm requires further development
prior to being adapted for translational purposes. The spelling
task was designed with no error correction to test the

robustness of the error factor in the DS algorithm. Correcting
selection errors requires at least two selective actions: deleting
the erroneous character and reselecting the correct character.
It has been recommended that P300 spellers perform with
accuracy levels >70% for practical communication, to
account for erroneous character revisions [52], and thus par-
ticipants D07, D06 and E23 may have accuracy levels that are
too low for effective communication. Improving the accuracy
levels of low performing users is a key next step which

Figure 7. Comparison of performance measures between static, dynamic stopping (DS) and dynamic stopping with language model (DSLM)
for (A) task completion time, (B) accuracy, (C) bit rate, and (D) theoretical bit rate in ALS patient study. The accuracy is the percentage of
characters correctly spelled by the user across test sessions. The maximum possible completion time, with pauses (3.5 s) between character
selections, was 21 min due to a sequence limit of 7. Bit rate is a communication rate that takes into account accuracy, task completion time
and the number of possible character choices of a communication channel. Theoretical bit rate excludes the time pauses between character
selections and represents an upper bound on the user’s possible communication rate.

Table 2. Summary of performance measures comparing static, dynamic stopping (DS) and dynamic stopping with language model (DSLM)
conditions.

Average performance measure Static DS DSLM p-value

Time to complete task (min) 21.00 *▼ 10.47 ± 5.69* 10.37 ± 5.86▼ <9 × 10−7

Accuracy (%) 79.44 ± 29.98 75.40 ± 27.16 76.39 ± 25.63 <0.23
Bit rate (bits/min) 6.44 ± 3.21*▼ 17.06 ± 11.78* 25.22 ± 19.56▼ <3.15 × 10−4

Theoretical bit rate (bits/min) 7.13 ± 3.56* ▼ 17.82 ± 15.54* 26.71 ± 21.21▼ <7.1 × 10−7

- Repeated measures ANOVA was used to determine differences between algorithm means at 5% level of
significance, i.e. a p-value <0.05 indicates at least two means are significantly different. When applicable, post-hoc
multiple comparison tests (with Bonferonni adjustment) were performed to determine specifically the algorithms for
which significant differences occurred.
- Symbols * or ▼ indicate pairs with significant differences.
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requires further P300 classifier development, potentially
through more sophisticated language models, natural lan-
guage processing tools like dictionary-based spelling correc-
tion [53], or predictive text. While language models and
spelling correction can be incorporated into the algorithm
without impact on the speller interface, predictive text must
be integrated into the BCI system while taking into account
the limited ability of target BCI users to navigate choices.
One possibility is to modify the algorithm to include pre-
dictive word options incorporated directly into the speller
grid, as in Kaufmann et al [43], to minimize spelling task
difficulty as word selection occurs in a similar manner to
character-based selection. Finally, the complication of spel-
ling phrases or sentences, where word-space boundaries are
important, must be considered. The spelling task designed in
this study, like most P300-based BCI studies, involved single-

word copy-spelling tasks where word length is known a priori;
however, a more realistic system would test the algorithm on
phrases or sentences. This will likely require additional con-
sideration with the language model as to when to transition
from word to space/punctuation to word boundaries, or how
robust the system will be to errors and still be able to discern
the user’s intended message. Further development of the lan-
guage model, automatic error correction, and predictive text
will likely lead to speller performance improvements and
further the transition of the system from research lab to home.

5. Conclusion

Overall, we provide a viable BCI algorithm that has been
validated in target BCI users with results indicating the
potential advantage of using an adaptive data collection to
improve P300 speller efficiency. Our adaptive algorithm has
potential for translation into prototype BCI speller systems
given the significant performance improvements over the
current state-of-art data collection method and the positive
feedback from the participants with ALS.

Acknowledgments

This research was supported by NIH/NIDCD grant number
R33 DC010470-03. The authors would like to thank the
participants for dedicating their time to this study. The authors
would also like to thank Ken Kingery (Duke University,
Durham NC 27708, USA) for editing the manuscript.

References

[1] Wolpaw J and Wolpaw E W 2012 Brain–Computer Interfaces:
Principles and Practice (New York: Oxford University)

[2] Akcakaya M, Peters B, Moghadamfalahi M, Mooney A R,
Orhan U, Oken B, Erdogmus D and Fried-Oken M 2013
Noninvasive brain–computer interfaces for augmentative
and alternative communication Biomed. Eng. 7 31–49

Figure 8. Survey results of algorithm preference for ALS study. The survey questions were asked of each of the ALS participants after each
P300 speller test session in which the test order of the three algorithms (Static, DS, and DSLM) was randomized.

Figure 9. Session classifier comparison for static stopping. The
average accuracy measured online shows the average within-session
classifier performance across all three sessions. Offline analysis was
used to compute the average accuracy for the inter-session
classifiers.

12

J. Neural Eng. 12 (2015) 016013 B O Mainsah et al

http://dx.doi.org/10.1109/rbme.2013.2295097


[3] Moghimi S, Kushki A, Guerguerian A M and Chau T 2013 A
review of EEG-based brain–computer interfaces as access
pathways for individuals with severe disabilities Assist.
Technol. 25 99–110

[4] Farwell L A and Donchin E 1988 Talking off the top of your
head: toward a mental prosthesis utilizing event-related brain
potentials Electroencephalogr. Clin. Neurophysiol. 70
510–23

[5] Sutton S, Braren M, Zubin J and John E R 1965 Evoked-
potential correlates of stimulus uncertainty Science 150
1187–8

[6] Krusienski D J et al 2006 A comparison of classification
techniques for the P300 Speller J. Neural Eng. 3 299–305

[7] Aloise F, Schettini F, Arico P, Salinari S, Babiloni F and
Cincotti F 2012 A comparison of classification techniques
for a gaze-independent P300-based brain–computer interface
J. Neural Eng. 9 045012

[8] Sellers E W and Donchin E A 2006 P300-based brain–
computer interface: initial tests by ALS patients Clin.
Neurophysiol. 117 538–48

[9] Hoffmann U, Vesin J-M, Ebrahimi T and Diserens K 2008 An
efficient P300-based brain–computer interface for disabled
subjects J. Neurosci. Methods 167 115–25

[10] Townsend G et al 2010 A novel P300-based brain–computer
interface stimulus presentation paradigm: moving beyond
rows and columns. Clin. Neurophysiol. 121 1109–20

[11] Sellers E W, Vaughan T M and Wolpaw J 2010 A brain–
computer interface for long-term independent home use
Amyotrophic Lateral Sclerosis 11 449–55

[12] Berger T W 2008 Brain–Computer Interfaces: An
International Assessment of Research and Development
Trends (Berlin: Springer) doi:10.1007/978-1-4020-8705-9

[13] Brunner P, Bianchi L, Guger C, Cincotti F and Schalk G 2011
Current trends in hardware and software for brain–computer
interfaces (BCIs) J. Neural Eng. 8 025001

[14] Sellers E W, McFarland D J, Vaughan T M and Wolpaw J R
2010 BCIs in the laboratory and at home: the Wadsworth
research program Brain–Computer Interfaces (Berlin:
Springer) pp 97–111

[15] www.intendix.com
[16] Heinrich S and Bach M 2008 Signal and noise in P300

recordings to visual stimuli Doc. Ophthalmol. 117 73–83
[17] Mak J N et al 2011 Optimizing the P300-based brain–computer

interface: current status, limitations and future directions
J. Neural Eng. 8 025003

[18] Ortner R et al (ed) 2011 Accuracy of a P300 speller for people
with motor impairments 2011 IEEE Symp. on
Computational Intelligence, Cognitive Algorithms, Mind,
and Brain (CCMB) pp 1–6

[19] Spüler M, Bensch M, Kleih S, Rosenstiel W, Bogdan M and
Kübler A 2012 Online use of error-related potentials in
healthy users and people with severe motor impairment
increases performance of a P300-BCI Clin. Neurophysiol.
123 1328–37

[20] Riccio A et al 2013 Attention and P300-based BCI
performance in people with amyotrophic lateral sclerosis
Frontiers Hum. Neurosci. 2013 7

[21] Schreuder M, Hohne J, Treder M, Blankertz B and
Tangermann M (ed) 2011 Performance optimization of
ERP-based BCIs using dynamic stopping 2011 Annual Int.
Conf. of the IEEE on Engineering in Medicine and Biology
Society (EMBC) pp 4580–3

[22] Schreuder M, Höhne J, Blankertz B, Haufe S, Dickhaus T and
Tangermann M 2013 Optimizing event-related potential
based brain–computer interfaces: a systematic evaluation of
dynamic stopping methods J. Neural Eng. 10 036025

[23] Serby H, Yom-Tov E and Inbar G F 2005 An improved P300-
based brain–computer interface IEEE Trans. Neural Syst.
Rehabil. Eng. 13 89–98

[24] Lenhardt A, Kaper M and Ritter H J 2008 An Adaptive P300-
based online brain–computer interface IEEE Trans. Neural
Syst. Rehabil. Eng. 16 121–30

[25] Liu T, Goldberg L, Gao S and Hong B 2010 An online brain–
computer interface using non-flashing visual evoked
potentials J. Neural Eng. 7 036003

[26] Thomas E, Clerc M, Carpentier A, Daucea E,
Devlaminck D and Munos R (ed) 2013 Optimizing P300-
speller sequences by RIP-ping groups apart 2013 6th Int.
IEEE/EMBS Conf. on Neural Engineering (NER) pp
1062–5

[27] Haihong Z, Cuntai G and Chuanchu W 2007 Towards
asynchronous brain–computer interfaces: a P300-based
computational approach with statistical models IEEE Trans.
Biomed. Eng. 55 5067–70

[28] Park J, Kim K and Jo S (ed) 2010 A POMDP approach to
P300-based brain–computer interfaces Proc. of the 15th Int.
Conf. on Intelligent User Interfaces (ACM) pp 1–10

[29] Speier W, Arnold C, Lu J, Deshpande A and Pouratian N 2014
Integrating language information with a hidden Markov
model to improve communication rate in the P300 speller
IEEE Trans. Neural Syst. Rehabil. Eng. 22 678–84

[30] Orhan U, Hild K E, Erdogmus D, Roark B, Oken B and
Fried-Oken M (ed) 2012 RSVP keyboard: an EEG based
typing interface 2012 IEEE Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP) doi:10.1109/
ICASSP.2012.6287966

[31] Jin J et al 2011 An adaptive P300-based control system
J. Neural Eng. 8 036006

[32] Hohne J, Schreuder M, Blankertz B and Tangermann M (ed)
2010 Two-dimensional auditory p300 speller with predictive
text system Annual Int. Conf. of the IEEE on Engineering in
Medicine and Biology Society (EMBC) (31 August–4
September) pp 4185–8

[33] Kübler A, Holz E and Kaufmann T 2013 Bringing BCI
controlled devices to end-users: a user centred approach and
evaluation ed J L Pons, D Torricelli and M Pajaro
Converging Clinical and Engineering Research on
Neurorehabilitation vol 1 (Berlin: Springer) pp 1271–4

[34] Throckmorton C S, Colwell K A, Ryan D B, Sellers E W and
Collins L M 2013 Bayesian approach to dynamically
controlling data collection in P300 spellers IEEE Trans.
Neural Syst. Rehabil. Eng. 21 508–17

[35] Mainsah B, Colwell K A, Collins L M and Throckmorton C S
2014 Utilizing a language model to improve online dynamic
data collection in P300 spellers IEEE Trans. Neural Syst.
Rehabil. Eng. 22 837–46

[36] Ryan D, Colwell K, Throckmorton C, Collins L and Sellers E
2013 Enhancing brain–computer interface performance in an
ALS population: checkerboard and color paradigms 5th Int.
BCI Meeting (Asilomar, CA) doi:10.3217/978-3-85125-
260-6-26

[37] Balota D A et al 2007 The English lexicon project Behav. Res.
Meth. 39 445–59

[38] Schalk G, McFarland D J, Hinterberger T, Birbaumer N and
Wolpaw J R 2001 BCI2000: development of a general
purpose brain–computer interface (BCI) system IEEE Trans.
Biomed. Eng. 51 1034–43

[39] The CMU Pronouncing Dictionary 2013 (www.speech.cs.cmu.
edu/cgi-bin/cmudict)

[40] McFarland D J, Sarnacki W A and Wolpaw J 2003 Brain–
computer interface (BCI) operation: optimizing information
transfer rates Biol. Psychol. 63 237–51

[41] Blankertz B, Krauledat M, Dornhege G, Williamson J,
Murray-Smith R and Müller K-R A 2007 Note on brain
actuated spelling with the Berlin brain–computer interface
Universal Access in Human–Computer Interaction Ambient
Interaction (Lecture Notes in Computer Science vol 4555)
ed C Stephanidis (Berlin: Springer) pp 759–68

13

J. Neural Eng. 12 (2015) 016013 B O Mainsah et al

http://dx.doi.org/10.1080/10400435.2012.723298
http://dx.doi.org/10.1080/10400435.2012.723298
http://dx.doi.org/10.1080/10400435.2012.723298
http://dx.doi.org/10.1016/0013-4694(88)90149-6
http://dx.doi.org/10.1016/0013-4694(88)90149-6
http://dx.doi.org/10.1016/0013-4694(88)90149-6
http://dx.doi.org/10.1016/0013-4694(88)90149-6
http://dx.doi.org/10.1126/science.150.3700.1187
http://dx.doi.org/10.1126/science.150.3700.1187
http://dx.doi.org/10.1126/science.150.3700.1187
http://dx.doi.org/10.1126/science.150.3700.1187
http://dx.doi.org/10.1088/1741-2560/3/4/007
http://dx.doi.org/10.1088/1741-2560/3/4/007
http://dx.doi.org/10.1088/1741-2560/3/4/007
http://dx.doi.org/10.1088/1741-2560/9/4/045012
http://dx.doi.org/10.1016/j.clinph.2005.06.027
http://dx.doi.org/10.1016/j.clinph.2005.06.027
http://dx.doi.org/10.1016/j.clinph.2005.06.027
http://dx.doi.org/10.1016/j.jneumeth.2007.03.005
http://dx.doi.org/10.1016/j.jneumeth.2007.03.005
http://dx.doi.org/10.1016/j.jneumeth.2007.03.005
http://dx.doi.org/10.1016/j.clinph.2010.01.030
http://dx.doi.org/10.1016/j.clinph.2010.01.030
http://dx.doi.org/10.1016/j.clinph.2010.01.030
http://dx.doi.org/10.3109/17482961003777470
http://dx.doi.org/10.3109/17482961003777470
http://dx.doi.org/10.3109/17482961003777470
http://dx.doi.org/10.1007/978-1-4020-8705-9
http://dx.doi.org/10.1088/1741-2560/8/2/025001
http://dx.doi.org/10.1007/978-3-642-02091-9_6
http://dx.doi.org/10.1007/978-3-642-02091-9_6
http://dx.doi.org/10.1007/978-3-642-02091-9_6
http://www.intendix.com
http://dx.doi.org/10.1007/s10633-007-9107-4
http://dx.doi.org/10.1007/s10633-007-9107-4
http://dx.doi.org/10.1007/s10633-007-9107-4
http://dx.doi.org/10.1088/1741-2560/8/2/025003
http://dx.doi.org/10.1109/CCMB.2011.5952115
http://dx.doi.org/10.1016/j.clinph.2011.11.082
http://dx.doi.org/10.1016/j.clinph.2011.11.082
http://dx.doi.org/10.1016/j.clinph.2011.11.082
http://dx.doi.org/10.3389/fnhum.2013.00732
http://dx.doi.org/10.1109/IEMBS.2011.6091134
http://dx.doi.org/10.1088/1741-2560/10/3/036025
http://dx.doi.org/10.1109/TNSRE.2004.841878
http://dx.doi.org/10.1109/TNSRE.2004.841878
http://dx.doi.org/10.1109/TNSRE.2004.841878
http://dx.doi.org/10.1109/TNSRE.2007.912816
http://dx.doi.org/10.1109/TNSRE.2007.912816
http://dx.doi.org/10.1109/TNSRE.2007.912816
http://dx.doi.org/10.1088/1741-2560/7/3/036003
http://dx.doi.org/10.1109/ner.2013.6696120
http://dx.doi.org/10.1109/IEMBS.2007.4353479
http://dx.doi.org/10.1109/IEMBS.2007.4353479
http://dx.doi.org/10.1109/IEMBS.2007.4353479
http://dx.doi.org/10.1145/1719970.1719972
http://dx.doi.org/10.1145/1719970.1719972
http://dx.doi.org/10.1145/1719970.1719972
http://dx.doi.org/10.1109/TNSRE.2014.2300091
http://dx.doi.org/10.1109/TNSRE.2014.2300091
http://dx.doi.org/10.1109/TNSRE.2014.2300091
http://dx.doi.org/10.1109/ICASSP.2012.6287966
http://dx.doi.org/10.1109/ICASSP.2012.6287966
http://dx.doi.org/10.1088/1741-2560/8/3/036006
http://dx.doi.org/10.1109/IEMBS.2010.5627379
http://dx.doi.org/10.1007/978-3-642-34546-3_212
http://dx.doi.org/10.1007/978-3-642-34546-3_212
http://dx.doi.org/10.1007/978-3-642-34546-3_212
http://dx.doi.org/10.1109/TNSRE.2013.2253125
http://dx.doi.org/10.1109/TNSRE.2013.2253125
http://dx.doi.org/10.1109/TNSRE.2013.2253125
http://dx.doi.org/10.1109/TNSRE.2014.2321290
http://dx.doi.org/10.3217/978-3-85125-260-6-26
http://dx.doi.org/10.3217/978-3-85125-260-6-26
http://dx.doi.org/10.3758/BF03193014
http://dx.doi.org/10.1109/tbme.2004.827072
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://dx.doi.org/10.1016/S0301-0511(03)00073-5
http://dx.doi.org/10.1016/S0301-0511(03)00073-5
http://dx.doi.org/10.1016/S0301-0511(03)00073-5
http://dx.doi.org/10.1007/978-3-540-73281-5_83
http://dx.doi.org/10.1007/978-3-540-73281-5_83
http://dx.doi.org/10.1007/978-3-540-73281-5_83


[42] Ryan D B, Frye G E, Townsend G, Berry D R, Mesa-G S,
Gates N A and Sellers E W 2011 Predictive spelling
with a P300-based brain–computer interface: increasing
the rate of communication Int. J. Hum.–Comput. Interact.
27 69–84

[43] Kaufmann T, Völker S, Gunesch L and Kübler A 2012
Spelling is just a click away—a user-centered brain–
computer interface including auto-calibration and predictive
text entry Frontiers Neurosci. 6 72

[44] Nijboer F, Birbaumer N and Kubler A 2010 The influence of
psychological state and motivation on brain–computer
interface performance in patients with amyotrophic lateral
sclerosis—a longitudinal study Frontiers Neurosci. 4

[45] Kleih S C, Nijboer F, Halder S and Kubler A 2010 Motivation
modulates the P300 amplitude during brain–computer
interface use Clin. Neurophysiol. 121 1023–31

[46] Lin E and Polich J 1999 P300 habituation patterns: individual
differences from ultradian rhythms Perceptual Motor Skills.
88 1111–25

[47] Cedarbaum J M et al 1999 The ALSFRS-R: a revised ALS
functional rating scale that incorporates assessments of
respiratory function J. Neurological Sci. 169 13–21

[48] McCane L M et al 2014 Brain–computer interface (BCI)
evaluation in people with amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis Frontotemporal
Degeneration 15 207–15

[49] Treder M S and Blankertz B 2010 (C)overt attention and visual
speller design in an ERP-based brain–computer interface
Behav. Brain Functions 6 28

[50] Allison B and Neuper C 2010 Could anyone use a BCI? Brain–
Computer Interfaces (Human–Computer Interaction
Series) ed D S Tan and A Nijholt (London: Springer)
pp 35–54

[51] Sellers E W, Ryan D B and Hauser C K 2014 Noninvasive
brain–computer interface enables communication after
brainstem stroke Sci. Translational Med. 6 257re7

[52] Nijboer F et al 2008 A P300-based brain–computer interface
for people with amyotrophic lateral sclerosis Clin.
Neurophysiol. 119 1909–16

[53] Mainsah B, Morton K, Collins L and Throckmorton C (ed)
2014 Extending language modeling to improve dynamic
data collection in ERP-based spellers 6th Int. Brain–
Computer Interface Conf. (Asimolar, CA) doi:10.3217/978-
3-85125-378-8-80

14

J. Neural Eng. 12 (2015) 016013 B O Mainsah et al

http://dx.doi.org/10.1080/10447318.2011.535754
http://dx.doi.org/10.1080/10447318.2011.535754
http://dx.doi.org/10.1080/10447318.2011.535754
http://dx.doi.org/10.3389/fnins.2012.00072
http://dx.doi.org/10.3389/fnins.2010.00055
http://dx.doi.org/10.1016/j.clinph.2010.01.034
http://dx.doi.org/10.1016/j.clinph.2010.01.034
http://dx.doi.org/10.1016/j.clinph.2010.01.034
http://dx.doi.org/10.2466/pms.1999.88.3c.1111
http://dx.doi.org/10.2466/pms.1999.88.3c.1111
http://dx.doi.org/10.2466/pms.1999.88.3c.1111
http://dx.doi.org/10.1016/S0022-510X(99)00210-5
http://dx.doi.org/10.1016/S0022-510X(99)00210-5
http://dx.doi.org/10.1016/S0022-510X(99)00210-5
http://dx.doi.org/10.3109/21678421.2013.865750
http://dx.doi.org/10.3109/21678421.2013.865750
http://dx.doi.org/10.3109/21678421.2013.865750
http://dx.doi.org/10.1186/1744-9081-6-28
http://dx.doi.org/10.1007/978-1-84996-272-8_3
http://dx.doi.org/10.1007/978-1-84996-272-8_3
http://dx.doi.org/10.1007/978-1-84996-272-8_3
http://dx.doi.org/10.1126/scitranslmed.3007801
http://dx.doi.org/10.1016/j.clinph.2008.03.034
http://dx.doi.org/10.1016/j.clinph.2008.03.034
http://dx.doi.org/10.1016/j.clinph.2008.03.034
http://dx.doi.org/10.3217/978-3-85125-378-8-80
http://dx.doi.org/10.3217/978-3-85125-378-8-80

	1. Introduction
	2. Methods
	2.1. Participants
	2.2. P300 speller task
	2.3. Signal acquisition
	2.4. Feature extraction and P300 classifier training
	2.5. Data collection stopping criteria
	2.5.1. Static stopping
	2.5.2. Bayesian DS
	2.5.3. Bayesian DSLM

	2.6. Performance measures

	3. Results
	4. Discussion
	5. Conclusion
	Acknowledgments
	References



