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Abstract Longer target-to-target intervals (TTI) produce 

greater P300 event-related potential amplitude, which can 

increase brain–computer interface (BCI) classification 

accuracy and decrease the number of flashes needed for 

accurate character classification. However, longer TTIs 

requires more time for each trial, which will decrease the 

information transfer rate of BCI. In this paper, a P300 BCI 

using a 7 9 12 matrix explored new flash patterns (16-, 18­

and 21-flash pattern) with different TTIs to assess the 

effects of TTI on P300 BCI performance. The new flash 

patterns were designed to minimize TTI, decrease repeti­

tion blindness, and examine the temporal relationship 

between each flash of a given stimulus by placing a min­

imum of one (16-flash pattern), two (18-flash pattern), or 

three (21-flash pattern) non-target flashes between each 

target flashes. Online results showed that the 16-flash pat­

tern yielded the lowest classification accuracy among the 

three patterns. The results also showed that the 18-flash 

pattern provides a significantly higher information transfer 

rate (ITR) than the 21-flash pattern; both patterns provide 

high ITR and high accuracy for all subjects. 
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1 Introduction 

Brain–computer interface systems (BCIs) provide a new 

channel for disabled patients to convey messages and 

commands. A variety of methods have enabled individuals 

to control devices and convey messages through BCIs 

using slow cortical potentials (SCPs) [3], motor imagery 

[4, 5, 7, 13, 27], steady-state visual evoked potentials 

(SSVEPs) [13, 35] and P300 potentials [8]. Each type of 

BCI device has advantages over others for specific func­

tions. P300 BCIs are functionally superior to other BCIs for 

users attempting to convey verbal information as they offer 

comparably greater information transfer rate (ITR). The 

ITR, given in bits per trial, is used as an evaluation mea­

surement in a BCI [26]. Although ITR is an objective 

measure of performance, when comparing across different 

paradigms and the value of the information provided at a 

given ITR, it can be a problematic measure if it is used 

exclusively [28, 29, 32–34]. 

The P300 BCI was first described by Farwell and Don-

chin [8]. P300 BCI paradigms typically present a matrix of 

characters aligned in rows and columns. Users are required 

to select characters by focusing their attention to a target 

character that is either internally derived (e.g., in the case of 

what is called free-spelling) or ‘copied’ from a set of pre­

defined characters. Although P300 BCIs offer excellent ITR 

relative to other BCI approaches, there remain unexplored 

opportunities to further improve ITR. Improving classifi­

cation accuracy for P300 BCI remains a primary focus of 

many researchers [1]. Applying advanced signal processing 

and machine learning algorithms to existing P300 BCIs can 

lead to increased classification accuracy [10, 11, 15, 19, 21, 

23, 36]. Modifying the typical P300 BCI paradigm can lead 

to improvements in the signal-to-noise ratio of P300 s. 

Indeed, studies have demonstrated higher classification 
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accuracy by increasing the matrix size [2, 16, 17, 30, 33], 

varying the order of flash sequences [17, 34], varying the 

stimulus onset asynchrony (SOA) [23, 30], and varying the 

stimulus rate [25, 33]. 

While unstudied in the context of BCIs, evidence sug­

gests that longer target-to-target intervals (TTI) produce 

higher P300 amplitude. TTI is the interval between the start 

of a target event and the start of another target event. 

Gonsalvez and Polich [9] reported that P300 amplitude 

increases with increasing TTI up to about 6–8 s. Martens 

et al. [24] demonstrated that increasing TTI reduces 

amplitude attenuation from overlapping P300 potentials, 

which significantly increases the classification accuracy. 

Flashing twice in succession may decrease P300 BCI 

performance, as the second flash might generate a small 

P300 or might not even be fully processed due to the 

‘‘repetition blindness’’, repetition blindness is a perceptual 

phenomenon that can occur when two identical targets are 

presented in a stream of non-targets at intervals of less than 

500 ms [31]. Moreover, short TTIs will lead to epoch 

‘‘overlaps’’ which can have a negative impact on the per­

formance of the P300 BCI system [24]. 

In this paper, TTI was controlled by placing a minimum 

of one (16-flash pattern), two (18-flash pattern) and three 

(21-flash pattern) non-target flashes between two target 

flashes. The goal of this design was to decrease the ‘‘rep­

etition blindness’’ and ‘‘overlaps’’ [18], and search the 

efficient TTI. 

2 Methods 

2.1 Experiment set up and stimulus parameters 

Experiments were performed according to a protocol 

approved by the institutional medical ethical committee. 

All subjects signed an informed consent document before 

participating in the experiment. Nine healthy subjects (five 

males and four females; age range 21–27) were recruited 

from East China University of Science and Technology to 

Fig. 1 The stimulus screen 

presented to the subject during 

the experiment 

participate in the study. All subjects had not previously 

used a BCI. Electroencephalography (EEG) was recorded 

using a g.USBamp and a g.EEGcap (Guger Technologies, 

Graz, Austria) with a sensitivity of 100 lV, band-pass fil­

tered between 0.1 and 30 Hz, and sampled at 256 Hz. EEG 

electrodes positioned at Fz, Cz, Pz, Oz, C3, C4, P3, P4, P7, 

P8, O1, and O2 from the extended International 10-20 

system. The right mastoid electrode was used as the ref­

erence, and the front electrode (FPz) was used as a ground. 

After EEG cap preparation, subjects were seated com­

fortably in front of an LCD screen and instructed to min­

imize movement during EEG recordings. Instructions were 

to focus on a single target character of 7 9 12 matrix of 

characters (see Fig. 1) and silently count each time that 

character flashed. 

Each subject participated in one experimental session. 

Sessions were divided into three offline and three online 

blocks. Each block consisted of one presentation condition 

(16-, 18-, and 21-flash patterns, described below) randomly 

ordered for each subject. Offline blocks included 15 char­

acter selections and online blocks included 15 selections. 

Offline data were used to train the signal classifier using 

Bayesian linear discriminant analysis (BLDA) and obtain 

the classifier model (see Sect. 2.5) for use in the online 

blocks. 

Each target character was selected from a predefined set 

of 15 characters. A trial is defined as the number of flashes 

presented to the subject before a classification decision is 

made. In offline conditions, feedback was not presented 

after each trial, because, a subject-specific classifier was 

not yet created. At the start of each trial, a cue was pre­

sented (1 s) to inform the subject which character to focus 

on. Each flash was presented for 100 ms, followed by a 

75 ms delay during which the grey character matrix stayed 

visible on the LCD. In the online experiment, a copy-

spelling task of 15 trials per-block was conducted for each 

of the three flash patterns. Time for the subjects to select 

the location of the character was increased to 2 s. The 

number flashes were adaptively selected by the system, and 

after the classifier model reached criterion the character 
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selected by the BLDA model was shown to the subject as 

feedback. 

During offline testing, there were 32 flashes of each 

character in the matrix at each trial. Each block consisted 

of five trials, each of which involved a different target 

character. During online testing, the number of flashes per 

trial was variable, because, the system adjusted this number 

to optimize performance as described in part 2.5. 

Three conditions were tested (‘‘16-flash pattern’’, ‘‘18­

flash pattern’’ and ‘‘21-flash pattern’’ conditions). For each 

condition, subjects participated in three offline blocks of 16 

trials. Subjects had 5-min rest between each condition in 

the offline experiment, and the order of conditions was 

random. After the offline experiment, three online blocks 

were completed for each condition. Presentation order of 

the conditions in the online experiment was the same as the 

offline experiment. In the online experiment, subjects had 

2-min rest between each of the three conditions. The online 

and offline experiment were done within the same day for 

each subject. 

2.2 Laptop keyboard design 

Figure 1 shows the display used in this study. We simu­

lated a keyboard using a 7 9 12 matrix. Function keys 

were arranged on the four sides of the matrix. To decrease 

interference from adjacent characters, the names of special 

keys were abbreviated. The goal of this design is to make it 

easy for users to find target characters and control the 

laptop. The items contained in the matrix allow for full-

keyboard emulation (to be used in future studies). In the 

current study, only the alphanumeric items were selected. 

2.3 The flash pattern design 

The flash pattern approaches presented here are based on 

binomial coefficients. The set of k combinations of a set 

n is denoted by Cðn; kÞ ¼ n!=ðk!ðn - kÞ!Þ; 0 � k � n . The 

number of flashes per trial is n, and k is the number of 

flashes per trial for each character [17, 18]. In this paper, a 

7 9 12 matrix containing 81 characters were used to 

simulate a laptop keyboard (See Fig. 1). To place a mini­

mum of one (minimum TTI is 350 ms, 16-flash pattern), 

two (minimum TTI is 525 ms, 18-flash pattern) and three 

(minimum TTI is 700 ms, 21-flash pattern) non-target fla­

shes between two target flashes and make the flash pattern 

of each trial random, we used the set of k combinations 

(k = 2) from set n (n = {16,18,21}, which is the lower 

limit to achieve these settings when k = 2). C(16, 2), C(18, 2) 

and C(21, 2) denote the 16-, 18- and 21-flash patterns, 

respectively. There are n (n = {16, 18, 21}) flash groups 

which are tagged as ‘‘flash1, flash2, …, flashn’’. We did not 

choose k [ 2, since k cannot be very high, because, the 

number of characters that flash at the same time depends on 

k; increasing k will increase interference from characters 

neighboring the target when the target is not flashing [18]. 

Although the order in which flashes are presented is 

random, the P300 speller system is limited by the settings 

of minimum TTIs. It is extremely unlikely that a subject 

would be able to detect the patterns of pseudo-randomized 

flashing due to the large number of stimulus combinations. 

To realize the minimum TTIs, when one flash (flash A) 

occurred, the next flash would not contain any character 

from flash A for 16-flash pattern, the next two flashes for 

the 18-flash pattern, and the next three flashes for the 

21-flash pattern. Figure 2 shows the configuration of the 

different flash pattern combinations. In each flash pattern, 

stimuli are not grouped in rows or columns. For example, 

the character ‘‘F1’’ would be selected if flash1 and flash4 

evoked a P300 in the 16-flash pattern (see Figs. 1, 2a). 

However, in the 18-flash pattern condition, ‘‘F1’’ would be 

selected if flash1 and flash6 evoked a P300 (see Figs. 1, 2b). 

We did not use other patterns with less flashes in each 

trial and longer SOA (SOA = 350, 525, 700 ms) to realize 

these minimum TTIs. The reason is as follows: based on 

binomial coefficients, 14-flash pattern also can identify 81 

elements in 7 9 12 matrix, since C(14,2) = 91. However, 

the time to completed all flashes in a trial is 4.9 s (14 9 

350 ms, minimum TTI is 350 ms), 7.35 s (14 9 525 ms, 

minimum TTI is 525 ms), and 9.8 s (14 9 700 ms, mini­

mum TTI is 700 ms). In the present method, the time to 

complete all flashes in a trial is 2.8 s (16 9 175 ms, min­

imum TTI is 350 ms), 3.15 s (18 9 175 ms, minimum TTI 

is 525 ms), and 3.675 s (21 9 175 ms, minimum TTI is 

700 ms). Thus, the present method provides a more effi­

cient presentation time and should improve ITR, all things 

being equal. 

2.4 Feature extraction procedure 

A third-order Butterworth band-pass filter was used to filter 

the EEG between 0.1 Hz and 12 Hz. Although the P300 is 

primarily in the band 0.1–4 Hz [14], it can also be found in 

higher bands [20]. The EEG was down-sampled from 

256 Hz to 36.6 Hz by selecting every seventh sample from 

the filtered EEG. EEG epochs of 800 ms were extracted 

from the data. The size of the feature vector was 12 9 29 

(12 channels by 29 time points). 

2.5 Classification scheme and adaptive settings 

Bayesian linear discriminant analysis is an extension of 

Fisher’s linear discriminant analysis that avoids problems 

such as overfitting the data [12]. Jin et al. [15] reported that 

BLDA out-performed LDA when used for classification of 

signals in a P300 BCI paradigm. Lei et al. [22] reported 
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Fig. 2 These three panels 

depict the configuration of 

different flash patterns: 16-flash 

pattern (a), 18-flash pattern 

(b) and 21-flash pattern (c). The 
numbers indicate which of the 

n flashes would illuminate the 

target character. For example, 

the top left element of panel A 

would be illuminated during the 

first and fourth of the 16 flashes. 

In each panel, flash1 is 

illuminated (grey part) 

that BLDA, when they were applied to motor imagery 

classification, classified more accurately than LDA and 

SVM. Thus, BDLA was chosen as the classification algo­

rithm for the present study. Depending on the condition, 

each trial yields 16, 18, or 21 classifier outputs, one output 

for one flash. The first and second maximum classifier 

outputs are selected to identify the target character. 

The number of trials per average was automatically 

selected by the system based on the classifier output. To 

determine if enough evidence is present to select a given 

character, the classifier was required to select the same 

character two times in succession. For example, in the 

beginning, a character [named cha (1)] would be tagged as 

the likely target based on the first group of classifier out­

puts. Next, the first and second group of classifier outputs 

would be averaged and a character [named cha (2)] would 

be tagged as the likely target based on the averaged out­

puts. If cha (1) = cha (2), cha (2) trial would be completed 

and the selected target would be present to the subject as 

feedback. If it did not meet the criterion, more groups of 

classifier outputs would be averaged until cha (n) = cha 

(n - 1). When 16 groups of classifier outputs were used in 

the average, the output would be the result obtained from 

16 average trials [18]. 

2.6 Practical bit rate 

We used two bit rate calculation methods: the practical bit 

rate and raw bit rate. The analyses of this paper are based 

on practical bit rate; we only present raw bit rate to facil­

itate comparisons with other studies. Practical bit rate can 

estimate the ‘‘actual’’ performance of the BCI system, 

because, it incorporates the fact that every error results in a 

penalty of two additional selections. The practical bit rate 

is calculated by BR 9 (1 - 2P), where BR is the raw bit 

rate and P is the online error rate of the system [34]. If 

P C 50%, the classification accuracy is very low to correct 

mistakes and the practical bit rate is, therefore, zero. 

3 Results 

In this paper, TTI was controlled by placing a minimum of 

one (16-flash pattern), two (18-flash pattern) and three (21­

flash pattern) non-target flashes between two target flashes. 

3.1 Online results 

The online results were used to evaluate the performance of 

three flash patterns. Table 1 shows the accuracy of online 

feedback using adaptive strategy. A one-way ANOVA was 

used to examine the differences in accuracy of feedback 

among 16-, 18-, and 21-flash patterns (F = 5.58, 

p \ 0.01). The 21-flash and 18-flash patterns yielded sig­

nificantly higher accuracy than the 16-flash pattern 

(F = 8.4, p \ 0.05; F = 5.3, p \ 0.05); however, the 

difference between 18- and 21-flash pattern did not reach 

statistical significant (F = 0.3, p = 0.59). 

From Table 1, the 16-flash pattern showed the lowest 

performance and was most unstable. Statistical significance 

was not obtained between the 18- and 21-flash patterns in 

accuracy of online feedback. 

Next, the practical and raw bit rates of the 18- and 

21-flash patterns were compared. Table 2 shows the online 

raw bit rate and practical bit rate for 18- and 21-flash 

pattern using adaptive strategy. The selection time (2 s) of 
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Table 1 Accuracy of online feedback 

S1 S2 S3 S4 S5 S6 S7 S8 S9 Average 

16-P 

Acc (%) 73.2 93.3 86.7 73.3 80.0 93.3 66.7 93.3 93.3 83.7 ± 10.6 

ATV 2.7 2.6 2.9 3.0 2.6 2.7 3.3 2.9 4.0 3.0 ± 0.4 

18-P 

Acc (%) 100 93.3 93.3 93.3 100 86.7 80.0 100 93.3 93.3 ± 6.7 

ATV 3.7 3.1 3.0 3.6 2.3 2.5 3.0 3.1 2.9 3.0 ± 0.4 

21-P 

Acc (%) 100 93.3 93.3 93.3 100 93.3 86.7 100 93.3 94.8 ± 4.4 

ATV 3.1 2.9 3.3 3.4 2.1 3.1 3.3 3.0 2.7 3.0 ± 0.4 

‘‘n-p’’ (n = {16, 18, 21}) corresponds to the 16-, 18- and 21-flash pattern 

Acc Classification accuracy, ATV average trials for average of each subject 

Table 2 Online raw bit rate and practical bit rate for 18- and 21-flash pattern 

S1 S2 S3 S4 S5 S6 S7 S8 S9 Average 

18-P 

Br 28.1 31.5 29.2 25.0 40.7 29.6 22.8 32.0 30.3 29.9 ± 5.0 

Pbr 28.1 27.3 25.3 21.7 40.7 21.7 13.7 32.0 26.2 26.3 ± 7.5 

21-P 

Br 28.1 26.1 23.8 23.03 39.6 24.7 21.1 29.2 28.3 27.1 ± 5.4 

Pbr 28.1 22.6 20.7 19.9 40.0 21.4 15.4 29.2 24.5 24.6 ± 7.1 

‘‘n-p’’ (n = {18, 21}) corresponds to the 18- and 21-flash pattern. The bit rates are measured in bits/min. The selection time (2 s) of target 

characters for subjects was included in calculating the Pbr and Br 

Pbr practical bit rate, Br raw bit rate 

target characters for subjects was included in calculating 

the Pbr and Br. Raw bit rate calculated with selection time 

was used to show the online information transfer rate of 

P300 BCIs which use other error-correction methods [6] 

except ‘‘Backspace’’. The average raw bit rate shows the 

bit rate assuming error correction. In Table 2, the average 

raw bit rate and average practical bit rate from subjects 1–9 

for the 18-flash pattern are higher than those for the 

21-flash pattern. Student’s t tests were used to examine 

differences in raw bit rate and practical bit rate between 18­

and 21-flash patterns. The 18-flash pattern yielded signifi­

cantly higher raw bit rate (p \ 0.01) than practical bit rate 

(p \ 0.05). Thus, users are able to finish a task more 

quickly using the 18-flash pattern than using the 21-flash 

pattern. 

3.2 Offline performance analysis 

In the offline analysis, TTI distributions of three patterns 

and grand waveform for electrode locations (Fz, Cz, Pz, 

Oz, O1, O2, P7, P8, P3, P4, C3 and C4) are shown in 

Figs. 3, 4, respectively. 

Figure 3 shows average TTI of the 16-flash pattern is 

shortest (1.3895 s) and average TTI of 21-flash pattern is 

Fig. 3 Average TTI distribution of 16-, 18- and 21-flash patterns in 

each run for nine subjects. TTI = flash duration 9 0.175 s. The 

X-axis represents the number of flashes used to calculate TTI. The 

Y-axis is the frequency of the TTIs in each run. avT is the average TTI 

of each pattern. avT = (average number of flashes) 9 0.175 s. To 

show the TTI distribution clearly, the frequencies that are C1 are 

shown 

longest (1.8235 s). Figure 4 shows the grand average P300 

amplitude of the 21-flash pattern is the greatest. However, 

these two patterns (16- and 21-flash pattern) did not obtain 
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Fig. 4 Grand averages waveforms for 16-, 18- and 19-flash patterns at electrode sites Fz, Cz, Pz, Oz, O1, O2, P7, P8, P3, P4, C3 and C4. 16-P is 

16-flash pattern, 18-P is 18-flash pattern and 21-P is 21-flash pattern 

the best performance, since an efficient TTI should be 

selected when considering P300 magnitude and the time 

necessary to obtain the desired output. 

3.3 Offline waveform analysis 

A one-way ANOVA was used to examine differences in 

P300 waveforms ranged from 300–450 ms among 16-, 18-, 

and 21-flash patterns (p \ 0.01 for electrode sites: Pz, Oz, 

O1, O2, P7 and P8; p \ 0.05 for electrode sites: Cz). It 

shows that the P300 waveforms for the 16-flash pattern is 

significantly lower than the 18-flash pattern (p \ 0.01 for 

electrode sites: Oz, P7 and P8; p \ 0.05 for electrode sites: 

Cz). The 16-flash pattern is also significantly lower than the 

21-flash pattern (p \ 0.01 for electrode sites: Cz, Oz, O1, 

O2, P7 and P8; p \ 0.05 for electrode sites: Cz). 

4 Discussion 

Target-to-target interval was examined by placing a mini­

mum of one (16-flash pattern), two (18-flash pattern) and 

three (21-flash pattern) non-target flashes between two 

target flashes. Hill et al. [11] reported that the traditional 

row/column pattern (RC pattern) has particular spatial 

properties that lead to better performance than one would 

expect from its TTIs and Hamming-distances alone. Jin 

et al. [16, 17] reported that the flash pattern based on 

binomial coefficients yields better performance than RC 

pattern. The present method is based on binomial coeffi­

cients and to improve the performance of P300 speller by 

controlling minimum TTIs. 

The 16-flash pattern, which has the shortest TTIs, resul­

ted in the lowest classification accuracy of the three patterns. 

In contrast, the 18- and 21-flash patterns obtained high 

classification accuracy. These findings illustrate the delete­

rious effects of TTIs that are very short (see Fig. 3). The 

minimum TTI of the 16-flash pattern (350 ms) is apparently 

not long enough to avoid repetition blindness. This study has 

also demonstrated that the 18-flash pattern with medium TTI 

rate obtained the highest ITR. These results illustrate the 

importance of properly selecting TTI (see Fig. 3). More­

over, TTI has a significant effect on the resulting P300 

amplitude and signal to noise ratio (see Fig. 4). 

Previous studies have demonstrated that the 16-flash 

pattern is superior to a RC flash pattern [17]. Therefore, a 
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RC comparison condition was not used in the present 

study. The goal of this paper was to determine the most 

efficient TTI in terms of BCI speed and accuracy. 

Currently, the literature has not agreed upon standard 

metrics for performance. Many articles present bit rate 

based only on the amount of time that the system is 

flashing, what we refer to here as ‘‘raw bit rate.’’ Bit rate 

calculated in this fashion ignores the time that is necessary 

between each trial. Although in a real-world setting, these 

breaks are needed to evaluate feedback, determine what the 

next selection should be, and then attend to the appropriate 

location in the display. Therefore, many studies report 

unrealistically high performance, in terms of bit rate 

[23, 32, 34]. Here, we have presented practical bit rates and 

raw bit rates to estimate an ecologically valid representa­

tion of P300 BCI performance. 

This paper examined and determined an efficient TTI for 

the P300 BCI. We have shown that an SOA of 525 ms is 

the most efficient SOA when using the binomial coefficient 

methods proposed here. User performance is better and 

more target flashes are detected presumably, because, 

repetition blindness has been reduced or removed. As the 

present study relies on manually derived binomial coeffi­

cients, future work should examine other possible methods 

to determine efficient TTI. 
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